{ "cells": [ { "cell_type": "markdown", "metadata": { "button": false, "new_sheet": false, "run_control": { "read_only": false } }, "source": [ "# Histogram\n", "---" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's import all the dependencies first." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "button": false, "new_sheet": false, "run_control": { "read_only": false }, "scrolled": false }, "outputs": [], "source": [ "# primary data structure library\n", "import pandas as pd \n", "\n", "# primary plotting library\n", "import matplotlib as mpl \n", "\n", "# importing the pyplot layer of matplotlib for easy usage\n", "import matplotlib.pyplot as plt \n", "\n", "# optional: for ggplot-like style of plots\n", "mpl.style.use(['ggplot']) \n", "\n", "# using the inline backend\n", "%matplotlib inline " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we'll create the DataFrame." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
12345678910
A4567123178154182287243267678
B23178154182285213267678244365
C354390489428401502528529561865
\n", "
" ], "text/plain": [ " 1 2 3 4 5 6 7 8 9 10\n", "A 45 67 123 178 154 182 287 243 267 678\n", "B 23 178 154 182 285 213 267 678 244 365\n", "C 354 390 489 428 401 502 528 529 561 865" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# dict for dummy data to be used in dataframe\n", "data = { 'A': [45,67,123,178,154,182,287,243,267,678],\n", " 'B': [23,178,154,182,285,213,267,678,244,365],\n", " 'C': [354,390,489,428,401,502,528,529,561,865]\n", " } \n", "\n", "# list for indexes to be used in dataframe\n", "index = [1, 2, 3,4,5,6,7,8,9,10] \n", "\n", "# making dataframe\n", "df = pd.DataFrame(data, index=index) \n", "\n", "# showing dataframe\n", "df.T " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's create the histogram of the column 'B'." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmUAAAGHCAYAAADx6yUzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAmxUlEQVR4nO3deZhkdX3v8fdv6JEmUeSaNkKzqpkYlTyCC0tIFHEJIBFzo1/RgIKYCQSM5uoVNbiEqJEsKgYEJ4AKeiFfBYWrE1GJKJoLIgSUxYUIyjAoDIRllGGEqfvHOaM1TS/VW/Wvp96v56lnqs751Tnf/lLdfvydpUqn00GSJEkLa8lCFyBJkiRDmSRJUhUMZZIkSRUwlEmSJFXAUCZJklQBQ5kkSVIFDGWS5k0pZd9SSqeUssMU495VSrmxTzX9binlm6WUdaWUm6f53ptLKcfPU2lT7btvPZK0MAxlkmakDVuTPW4G/gPYDljdvuf323W7LGDpfw/cC/wO8KzxBpRSjp9uYJuNUsouY3p3Tynl8lLKwbPc7pdLKR+bozIlzTNDmaSZ2q7rsTE87NG17FmdTmd9p9P5SafT2bBANY5nGfDVTqdzc6fTuWOhixnjYJre7QXcAJxfStlrYUuS1C+GMkkz0oatn3Q6nZ8Ad7WL7+hafkf34ct2duzSdtxN7fJLJtp+KeUFpZRvlFLuL6XcWkr5aCnlNyarqZSyXSnl3FLK3e37LimlPLNdt0sppQM8ETih3f+7xtnG4cDfAjt3zVx1j3tEKeWkUspdpZSfllL+sZSyxZhtvK6U8t32EOkPSil/XUoZmqz21l1t724A/gx4gF8F3vF+3leXUq4vpTxQSllVSnn3xv20M2TPA17d9XPs20MNkhZIL38kJGku3EITMC6gmVG7BVg/3sBSyn7tuOOAw4FtaA47fqaU8pzOON8PV0opwGeBLYGDgHuA44EvlVKWtfvbDrgC+CTwQWDtOLv/V5pDm3/Krw5vdo97HXAisCfw9HZb1wEfbet4F3AE8AbgauDJwGnAMPD28X7eCTwI/AJYOt7KUsqLgDPbn/E8YPd2P512P68HngDc1j6HX4VnSRUylEnqi06n81ApZZMZtUmGvwP4UKfT+eeNC0oprwZ+BDyNJuyMtR9N2Htqp9O5vn3Pq4Cbgb/odDonAD8ppTwErJ1o/51O5/5SylrgoQnGXNrpdN7XPv9BKeUI4IXAR0spvwa8GfifnU7nC+2Ym9qLAz5Ej6GslDIMvAXYGvjyBMPeApzX6XT+rn39/VLKtsD7Sil/2+l07imlrAfun6LXkiphKJNUo2cBe5VSjh1n3TLGD2VPBe7cGMgAOp3OA6WUy9t1c2Xsvm8FHt9Vw1bAee2h0o22AIZLKY+d4jy2L5ZSNrTb+G/gr7rC3VhPpZnV6/ZVmhm5J9KckyZpETGUSarREppDhGePs26yWZ+HHdYEygTLZ2rsIdcOvzo/d+O/LwO+P857pzp8eARwJXBPjxchjP25ygTLJS0ChjJJ/bQx0Gwx6Sj4Fs1hyOncl+s6YKSU8pSuw5db0hzS/PAM6pyqxolqWAc8odPprJzB+2+dxs98HfAc4JSuZc8G7gd+2L6e6c8haQF49aWkfvoRsAE4sJTym6WUR08w7h3AwaWUD5RSdiulPLGUsn8p5YxSylYTvOffgW8C/6eUsk8pZVfgLJrDeadOs86bgG1LKXuXUkbac8Wm1Ol01gLvBd5bSjm2lPKkUspTSymHlFJOnGYNU/k74E9KKW8ppfx2KSWAdwH/1Ol0Nobfm4BntP0bKaWMe9GApDoYyiT1TafT+SnwVpqT1G+jucJyvHFfoTlx/3dpbqPxbeADwH00VySO954O8BLgu8Dnaa6y3BZ4QafTWTPNUj8LfKrdzh00J+/3pNPp/C3wV8BrgWuAr7evb55mDVPtZyXwGuDVwLU0/fkw8Dddw/4JWNPWcQewz1zWIGlulXGuLJckSVKfOVMmSZJUAUOZJElSBQxlkiRJFTCUSZIkVcBQJkmSVIHFfvNYLx2VJEmLSZloxWIPZaxevXrCdSMjI6xZM93bEw02ezYz9m367NnM2Lfps2fTZ89mZqq+jY6OTvp+D19KkiRVwFAmSZJUAUOZJElSBQxlkiRJFTCUSZIkVcBQJkmSVAFDmSRJUgUMZZIkSRUwlEmSJFXAUCZJklSBvn7NUkRsAXwLuDUzDxqzrgAnAQcCPwcOz8yr+lmfJEnSQun3TNnrgRsmWHcAsKx9LAdO7VdRkiRJC61voSwidgBeBJw+wZCDgbMys5OZlwHbRMR2/apPkiRpIfXz8OUHgTcDj5pg/fbALV2vV7XLbuseFBHLaWbSyExGRkYm3OHQ0NCk6/Vwi6Vn95564kKXsIn7yhIe0dkwo/duffRxc1zN4rBYPmu1sW/TZ8+mz57NzGz71pdQFhEHAbdn5pURse8Ew8o4yzpjF2TmCmDFxvVr1qyZcL8jIyNMtl4Pt1h6tmHduoUuYRPDw8Osm2FN6xdBv+fDYvms1ca+TZ89mz57NjNT9W10dHTS9/fr8OU+wIsj4mbgXGC/iPjEmDGrgB27Xu8ArO5PeZIkSQurLzNlmflW4K0A7UzZmzLz0DHDLgSOjYhzgT2BezLzNiRJkgZAX2+JMVZEHAWQmacBK2luh3EjzS0xjljA0iRJkvqq76EsMy8BLmmfn9a1vAMc0+96JEmSauAd/SVJkipgKJMkSaqAoUySJKkChjJJkqQKGMokSZIqYCiTJEmqgKFMkiSpAoYySZKkChjKJEmSKmAokyRJqoChTJIkqQKGMkmSpAoYyiRJkipgKJMkSaqAoUySJKkChjJJkqQKGMokSZIqYCiTJEmqgKFMkiSpAoYySZKkChjKJEmSKmAokyRJqoChTJIkqQKGMkmSpAoYyiRJkipgKJMkSaqAoUySJKkChjJJkqQKGMokSZIqYCiTJEmqwFA/dhIRw8DXgC3bfX46M985Zsy+wAXATe2i8zPzhH7UJ0mStND6EsqAB4D9MnNtRCwFvh4R/5aZl40Zd2lmHtSnmiRJkqrRl1CWmR1gbftyafvo9GPfkiRJi0G/ZsqIiC2AK4HfAk7JzMvHGbZ3RFwDrAbelJnXjbOd5cBygMxkZGRkwn0ODQ1Nul4Pt1h6du/w8EKXsIlSljA8w5q2XgT9ng+L5bNWG/s2ffZs+uzZzMy2b6XT6e+EVURsA3wGeF1mXtu1fGtgQ3uI80DgpMxcNsXmOqtXr55w5cjICGvWrJmDqgfHYunZhrNPWegSNjE8PMy6detm9N4lhx0zx9UsDovls1Yb+zZ99mz67NnMTNW30dFRgDLR+r5ffZmZdwOXAPuPWX5vZq5tn68ElkaEMV2SJA2EvoSyiHhsO0NGRGwFPB/47pgx20ZEaZ/v0dZ2Zz/qkyRJWmj9OqdsO+Dj7XllS4DMzM9FxFE0L04DXgocHREPAvcDh7QXCEiSJG32+nX15beB3cdZflrX85OBk/tRjyRJUm28o78kSVIFDGWSJEkVMJRJkiRVwFAmSZJUAUOZJElSBQxlkiRJFTCUSZIkVcBQJkmSVAFDmSRJUgUMZZIkSRUwlEmSJFXAUCZJklQBQ5kkSVIFDGWSJEkVMJRJkiRVwFAmSZJUAUOZJElSBQxlkiRJFTCUSZIkVcBQJkmSVAFDmSRJUgUMZZIkSRUwlEmSJFXAUCZJklQBQ5kkSVIFDGWSJEkVMJRJkiRVwFAmSZJUAUOZJElSBYb6sZOIGAa+BmzZ7vPTmfnOMWMKcBJwIPBz4PDMvKof9UmSJC20fs2UPQDsl5lPA3YD9o+IvcaMOQBY1j6WA6f2qTZJkqQF15dQlpmdzFzbvlzaPjpjhh0MnNWOvQzYJiK260d9kiRJC60vhy8BImIL4Ergt4BTMvPyMUO2B27per2qXXZbfyqUJElaOH0LZZn5ELBbRGwDfCYids3Ma7uGlHHeNnY2jYhYTnN4k8xkZGRkwn0ODQ1Nul4Pt1h6du/w8EKXsIlSljA8w5q2XgT9ng+L5bNWG/s2ffZs+uzZzMy2b30LZRtl5t0RcQmwP9AdylYBO3a93gFYPc77VwAr2pedNWvWTLivkZERJluvh1ssPduwbt1Cl7CJ4eFh1s2wpvWLoN/zYbF81mpj36bPnk2fPZuZqfo2Ojo66fv7dfXlY4FftIFsK+D5wIljhl0IHBsR5wJ7AvdkpocuJUnSQOjXTNl2wMfb88qWAJmZn4uIo2henAaspLkdxo00t8Q4ok+1SZIkLbi+hLLM/Daw+zjLT+t63gGO6Uc9kiRJtfGO/pIkSRUwlEmSJFXAUCZJklQBQ5kkSVIFDGWSJEkVMJRJkiRVwFAmSZJUAUOZJElSBQxlkiRJFTCUSZIkVcBQJkmSVAFDmSRJUgUMZZIkSRUwlEmSJFXAUCZJklQBQ5kkSVIFDGWSJEkVMJRJkiRVwFAmSZJUAUOZJElSBQxlkiRJFZhRKIuIJ0TEznNdjCRJ0qDqKZRFxDkR8Xvt8yOA64DrI+LI+SxOkiRpUPQ6U/Y84Fvt8/8FPB/YA3jLfBQlSZI0aIZ6HPeIzFwfEdsDj8nMbwBExOPmrzRJkqTB0Wsouzoi3grsDHweoA1o985XYZIkSYOk18OXRwK/C2wFHN8u2xv45HwUJUmSNGh6minLzP8CXjlm2aeBT89HUZIkSYNmwlAWEYdl5tnt89dMNC4zz5yPwiRJkgbJZDNlrwDObp8fNsGYDmAokyRJmqUJQ1lmHtj1/Lmz2UlE7AicBWwLbABWZOZJY8bsC1wA3NQuOj8zT5jNfiVJkhaLXm8e++wJlr+ix/08CLwxM58M7AUcExFPGWfcpZm5W/swkEmSpIHR6y0xzouIM4HjM/MXEbEN8BFgd+Ccqd6cmbcBt7XP74uIG4DtgetnVLUkSdJmptdbYjwN2A24ov1qpe8Ad9OEsmmJiF3a910+zuq9I+KaiPi3iHjqdLctSZK0WPV6S4zVEfESmiC1AjgjM/98ujuLiEcC5wFvyMyxN569Ctg5M9dGxIHAZ4Fl42xjObC8rYuRkZEJ9zc0NDTpej3cYunZvcPDC13CJkpZwvAMa9p6EfR7PiyWz1pt7Nv02bPps2czM9u+lU6nM+WgiNiN5kaxPwBOBz4IXAEcnZl397KjiFgKfA64KDPf38P4m4FnZuaaSYZ1Vq9ePeHKkZER1qyZ7O0aa7H0bMPZpyx0CZsYHh5m3bp1M3rvksOOmeNqFofF8lmrjX2bPns2ffZsZqbq2+joKECZaH2vhy8vBt6fmS/JzM/RHM78Oc1hzClFRAHOAG6YKJBFxLbtOCJij7a2O3usT5IkaVHr9UT/Z2XmDze+yMyfAUdGxIt7fP8+NPc6+05EXN0uexuwU7u904CXAkdHxIPA/cAhmTn1NJ4kSdJmoNdzyn44wfILe3z/15lkuq4dczJwci/bkyRJ2tz0FMoiYmvgXcBzgBG6AlZm7jQvlUmSJA2QXs8p+zDwdOAE4DHA64AfAx+Yp7okSZIGSq+h7IXAn2TmBcBD7b8vZ+LvxJQkSdI09BrKlgD3tM/Xtnf0vw34rfkoSpIkadD0evXlNTTnk10MXAqcAqwFvj9PdUmSJA2UXmfK/gy4uX3+lzS3rNgGeNXclyRJkjR4pn1LjMy8A3jtvFUkSZI0gHqdKfuliOjpLv6SJEnq3bRDGbDznFchSZI04CYNZRHx1HEWT3pnfkmSJE3fVDNl/xERb4+ILbqWHTCfBUmSJA2iqULZs4DnAVdGxO7wy++xlCRJ0hya9OrLzPw+sG9E/DlwUUScBVw/ZsyZ81ifJEnSQOj15rEXAi8DXgrc1LW8AxjKJEmSZmnKUBYRrwX+DvgYcFBmrpvvoiRJkgbNpKEsIr4MPA54UWZ+sz8lSZIkDZ6pTvS/DHiGgUySJGl+TXWi//H9KkSSJGmQzeSO/pIkSZpjhjJJkqQKGMokSZIq0Ot9yoiIRwNPAh7ZvTwz/32ui5IkSRo0PYWyiDgcOAVYC/y8a1UHeMLclyVJkjRYep0pew/w0sz8t/ksRpIkaVD1ek7ZEPDF+SxEkiRpkPUayk4Ejo8ILwyQJEmaB70evvwrYFvgzRFxZ/eKzNxpzquSJEkaML2GskPntQpJkqQB11Moy8yvznchkiRJg6zXW2IsBY4HDgNGgdXA2cB7MnP9/JUnSZI0GHo9fPn3wB7AUcCPgJ2BtwNb05xvNqmI2BE4i+a8tA3Aisw8acyYApwEHEhzL7TDM/OqHuuTJEla1Hq9mvJlwIsz84uZ+b3M/CLwx0D0+P4HgTdm5pOBvYBjIuIpY8YcACxrH8uBU3vctiRJ0qLXaygr01y+icy8beOsV2beB9wAbD9m2MHAWZnZyczLgG0iYrse65MkSVrUej18+Sng/0bE3wA/pjl8eTyQ091hROwC7A5cPmbV9sAtXa9XtctuG/P+5TQzaWQmIyMjE+5raGho0vV6uMXSs3uHhxe6hE2UsoThmdb0qTPmtpgFsvXRx01r/GL5rNXGvk2fPZs+ezYzs+1br6HszTQh7BSaE/1vBc4F3j2dnUXEI4HzgDdk5r1jVo8369YZuyAzVwArNq5fs2bNhPsbGRlhsvV6uMXSsw3r1i10CZsYHh5mXWU19dv6aX5uFstnrTb2bfrs2fTZs5mZqm+jo6OTvr/XW2KsB97RPmakvYLzPOCTmXn+OENWATt2vd6B5ipPSZKkzV6vM2Wz0l5ZeQZwQ2a+f4JhFwLHRsS5wJ7APZl52wRjJUmSNit9CWXAPjT3OPtORFzdLnsbsBNAZp4GrKS5HcaNNLfEOKJPtUmSJC24voSyzPw6U1ypmZkd4Jh+1CNJklSbXm+JIUmSpHk04UxZRLymlw1k5plzV44kSdJgmuzw5WE9vL8DGMokSZJmacJQlpnP7WchkiRJg6znE/0j4jdoro7cNjP/ISJGgSWZuWreqpMkSRoQPZ3oHxHPAb4H/Cm/uoHsMvzScEmSpDnR69WXHwRenpn7Aw+2yy4H9piPoiRJkgZNr6Fsl8y8uH2+8fso19O/m89KkiRt1noNZddHxB+OWfZ84DtzXI8kSdJA6nWm643A5yLi88BWEfER4I+Ag+etMkmSpAHS00xZZl4GPA24jua+ZDcBe2TmFfNYmyRJ0sDo+WuWMvNW4B+AdwEneisMSZKkudPT4cuI2Ab4Z+BlwFLgFxHxKeD1mXnX/JUnSZI0GHqdKfsosBWwO/Co9t8t8SuWJEmS5kSvJ/o/F9guM+9vX98QEYcDq+elKkmSpAHT60zZ94BdxizbqV0uSZKkWZpwpiwiXtP18mLgixFxNnALsCNwKHD2/JYnSZI0GCY7fHnYmNc3Anu3D4D/6nouSZKkWZgwlGXmc/tZiCRJ0iCb9ndXRkQBysbXmblhTiuSJEkaQL3ep2x74GTg2cA2Y1ZvMcc1SZIkDZxer748DVgPPA9YCzwduBA4ap7qkiRJGii9hrLfA16TmVcDncy8BjiS5ovKJUmSNEu9hrKHgAfb53dHxGOBnwHbz0tVkiRJA6bXUHY5cGD7/CLgX4HzgW/NR1GSJEmDpterLw/jVwHuDTSHLR8FfGAeapIkSRo4PYWyzLy76/n9wLsjYgvgncA75qc0SZKkwdHr4cvxDAF/PVeFSJIkDbLZhDLouomsJEmSZm62oawzJ1VIkiQNuEnPKYuI/SZZ/YhedxIRZwIHAbdn5q7jrN8XuAC4qV10fmae0Ov2JUmSFrupTvQ/Y4r1P+5xPx+j+ZqmsyYZc2lmHtTj9iRJkjYrk4ayzHz8XOwkM78WEbvMxbYkSZI2R73ep6wf9o6Ia4DVwJsy87rxBkXEcmA5QGYyMjIy4QaHhoYmXa+HWyw9u3d4eKFL2EQpSxiurKZ+23qan5vF8lmrjX2bPns2ffZsZmbbt1pC2VXAzpm5NiIOBD4LLBtvYGauAFa0Lztr1qyZcKMjIyNMtl4Pt1h6tmHduoUuYRPDw8Osq6ymfls/zc/NYvms1ca+TZ89mz57NjNT9W10dHTS98/26ss5kZn3Zuba9vlKYGlEGNElSdLAqCKURcS2EVHa53vQ1HXnwlYlSZLUP305fBkR5wD7AiMRsYrm65mWAmTmacBLgaMj4kHgfuCQzPQeaJIkaWD0JZRl5iumWH8yzS0zJEmSBlIVhy8lSZIGnaFMkiSpAoYySZKkChjKJEmSKmAokyRJqoChTJIkqQKGMkmSpAoYyiRJkipgKJMkSaqAoUySJKkChjJJkqQKGMokSZIqYCiTJEmqgKFMkiSpAoYySZKkChjKJEmSKmAokyRJqoChTJIkqQKGMkmSpAoYyiRJkipgKJMkSaqAoUySJKkChjJJkqQKGMokSZIqYCiTJEmqgKFMkiSpAoYySZKkChjKJEmSKmAokyRJqoChTJIkqQJD/dhJRJwJHATcnpm7jrO+ACcBBwI/Bw7PzKv6UZskSVIN+jVT9jFg/0nWHwAsax/LgVP7UJMkSVI1+hLKMvNrwF2TDDkYOCszO5l5GbBNRGzXj9okSZJq0JfDlz3YHril6/WqdtltYwdGxHKa2TQyk5GRkQk3OjQ0NOn6Xt176omz3kYNtj76uCnHzFXP5tu9w8MLXcImSlnCcGU19d2nzpjW8PvKEh7R2TBPxWy+ptu3Xn7vN3eL5e9aTXrt2ebyv48wN78rs/2s1RLKyjjLOuMNzMwVwIqNY9asWTPhRkdGRphsfa82rFs3623UYH0PvZirns232v6bDA8Ps66ymmpnz2Zmun3r5fd+c7dY/q7VpNee1fa3eDbm4ndlqr6Njo5O+v5arr5cBezY9XoHYPUC1SJJktR3tcyUXQgcGxHnAnsC92Tmww5dSpIkba76dUuMc4B9gZGIWAW8E1gKkJmnAStpbodxI80tMY7oR12SJEm16Esoy8xXTLG+AxzTj1okSZJqVMs5ZZIkSQPNUCZJklQBQ5kkSVIFDGWSJEkVMJRJkiRVwFAmSZJUAUOZJElSBQxlkiRJFTCUSZIkVcBQJkmSVAFDmSRJUgUMZZIkSRUwlEmSJFXAUCZJklQBQ5kkSVIFDGWSJEkVMJRJkiRVwFAmSZJUAUOZJElSBQxlkiRJFTCUSZIkVcBQJkmSVAFDmSRJUgUMZZIkSRUwlEmSJFXAUCZJklQBQ5kkSVIFDGWSJEkVMJRJkiRVwFAmSZJUgaF+7Sgi9gdOArYATs/M941Zvy9wAXBTu+j8zDyhX/VJkiQtpL6EsojYAjgFeAGwCrgiIi7MzOvHDL00Mw/qR02SJEk16dfhyz2AGzPzh5m5HjgXOLhP+5YkSapevw5fbg/c0vV6FbDnOOP2johrgNXAmzLzurEDImI5sBwgMxkZGZlwp0NDQ5Ou79W9w8Oz3kYNtu6hF3PVs/lW23+TUpYwXFlNtbNnMzPdvvXye7+5Wyx/12rSa89q+1s8G3PxuzLbz1q/QlkZZ1lnzOurgJ0zc21EHAh8Flg29k2ZuQJYsXEba9asmXCnIyMjTLa+VxvWrZv1NmqwvodezFXP5ltt/02Gh4dZV1lNtbNnMzPdvvXye7+5Wyx/12rSa89q+1s8G3PxuzJV30ZHRyd9f78OX64Cdux6vQPNbNgvZea9mbm2fb4SWBoR/l8bSZI0EPo1U3YFsCwiHg/cChwCvLJ7QERsC/w0MzsRsQdNYLyzT/VJkiQtqL7MlGXmg8CxwEXADc2ivC4ijoqIo9phLwWubc8p+xBwSGaOPcQpSZK0WerbfcraQ5Irxyw7rev5ycDJ/apHkiSpJt7RX5IkqQKGMkmSpAoYyiRJkipgKJMkSaqAoUySJKkChjJJkqQKGMokSZIqYCiTJEmqgKFMkiSpAoYySZKkChjKJEmSKmAokyRJqoChTJIkqQKGMkmSpAoYyiRJkipgKJMkSaqAoUySJKkChjJJkqQKGMokSZIqYCiTJEmqgKFMkiSpAoYySZKkChjKJEmSKmAokyRJqoChTJIkqQKGMkmSpAoYyiRJkipgKJMkSaqAoUySJKkCQ/3aUUTsD5wEbAGcnpnvG7O+tOsPBH4OHJ6ZV/WrPkmSpIXUl5myiNgCOAU4AHgK8IqIeMqYYQcAy9rHcuDUftQmSZJUg34dvtwDuDEzf5iZ64FzgYPHjDkYOCszO5l5GbBNRGzXp/okSZIWVL9C2fbALV2vV7XLpjtGkiRps9Svc8rKOMs6MxhDRCynObxJZjI6Ojrpjqda35Pj3jP7bSwic9Kz+TZg/00kzc6i+LtWmZ565t/ih5nNZ61fM2WrgB27Xu8ArJ7BGDJzRWY+MzOfSRPkJnxExJVTjfFhz+ybPVtMD/tmz+xZvY8e+zahfs2UXQEsi4jHA7cChwCvHDPmQuDYiDgX2BO4JzNv61N9kiRJC6ovM2WZ+SBwLHARcEOzKK+LiKMi4qh22Ergh8CNwL8Af9GP2iRJkmrQt/uUZeZKmuDVvey0rucd4Jg53u2KOd7eILBnM2Pfps+ezYx9mz57Nn32bGZm1bfS6TzsXHpJkiT1mV+zJEmSVIG+Hb7sp6m+0mmQRcSZwEHA7Zm5a7vsMcC/ArsANwORmf/drnsrcCTwEPCXmXnRApS9oCJiR+AsYFtgA7AiM0+ybxOLiGHga8CWNH9nPp2Z77RnU2u/AeVbwK2ZeZA9m1pE3AzcR9OHBzPzmfZtahGxDXA6sCvNLaheA3wP+zauiHgSTW82egLwDpr/fZiTnm12M2U9fqXTIPsYsP+YZW8BLs7MZcDF7Wvavh0CPLV9z4fb/g6aB4E3ZuaTgb2AY9re2LeJPQDsl5lPA3YD9o+IvbBnvXg9zQVRG9mz3jw3M3drb5cE9q0XJwFfyMzfAZ5G87mzbxPIzO+1n7HdgGfQfE/3Z5jDnm12oYzevtJpYGXm14C7xiw+GPh4+/zjwEu6lp+bmQ9k5k00V8bu0Y86a5KZt2XmVe3z+2j+cG2PfZtQ+3Vpa9uXS9tHB3s2qYjYAXgRzezFRvZsZuzbJCJia+DZwBkAmbk+M+/GvvXqecB/ZeaPmMOebY6hzK9rmr7HbbwnXPvvb7bL7eUYEbELsDtwOfZtUhGxRURcDdwOfCkz7dnUPgi8meYw+Ub2bGod4IsRcWX7rS9g36byBOAO4KMR8Z8RcXpE/Dr2rVeHAOe0z+esZ5tjKBvvbrleYjoz9rJLRDwSOA94Q2beO8lQ+wZk5kPtNP8OwB4Rseskwwe+ZxGx8VzPK3t8y8D3rMs+mfl0mtNWjomIZ08y1r41hoCnA6dm5u7Az2gPu03AvrUi4hHAi4FPTTF02j3bHENZT1/XpE38NCK2A2j/vb1dbi9bEbGUJpB9MjPPbxfbtx60h0QuoTmnwp5NbB/gxe1J6+cC+0XEJ7BnU8rM1e2/t9Oc47MH9m0qq4BV7Qw2wKdpQpp9m9oBwFWZ+dP29Zz1bHMMZb/8Sqc2zR5C8xVOmtiFwKvb568GLuhafkhEbNl+RdYy4JsLUN+CiohCc97FDZn5/q5V9m0CEfHY9souImIr4PnAd7FnE8rMt2bmDpm5C83frX/PzEOxZ5OKiF+PiEdtfA68ELgW+zapzPwJcEt7RSE050hdj33rxSv41aFLmMOebXahbKKvdFrYquoREecA/w94UkSsiogjgfcBL4iIHwAvaF/T9i1pflG/AByTmQ8tTOULah/gMJqZi6vbx4HYt8lsB3wlIr5N83+UvpSZn8OezYQ9m9zjgK9HxDU0/4P3+cz8AvatF68DPtn+nu4GvBf7NqmI+DWavpzftXjOeuYd/SVJkiqw2c2USZIkLUaGMkmSpAoYyiRJkipgKJMkSaqAoUySJKkCQwtdgCSNJyIuAT6RmadPNXYu31ujiNiJ5rL6Rw/ibQikQWEokzSv2jvUvzYzv7zQtcyliNiC5p5/n83M93Ytu5zmS4j/ca72lZk/Bh45V9uTVCcPX0rSDLQzVq8B3hIRv9MufhPNd9t9YMEKk7RoOVMmaUFExP8Azgb2pPlb9A3gqMxc1TXsiRHxTeBJNN+feURm3tW+fy/g/cBTgB8Br8/MS3rY75bAiUC0ixI4LjMfiIh9gU/QhKrjgIeAt2XmR8fbVmZeGxHvB86IiNcCbwN+f6JDjBFxBPBmmu/AuwM4MTM/0q47Dvjj9v0PRsTRNN9O8gxgW+AmYGm77nDgHcBjgTXA8Zn5yal+dkl1c6ZM0kJZAnwU2BnYCbgfOHnMmFfRzEaNAg8CHwKIiO2BzwPvBh5DM0N1XkQ8tof9/jWwF83XyjyN5surj+9avy3waGB74EjglDZATuS9wNbApcAHM/M7k4y9HTioHX8E8IGIeHq77h+A9cDxEbGs3e6hmbmuewPt9zt+CDggMx8F/B5w9eQ/sqTFwJkySQsiM+8Eztv4OiLeA3xlzLCzM/Padv3bgasj4tXAocDKzFzZjvtSRHwLOBD4+BS7/lPgdZl5e7vdvwE+Ary9Xf8L4IT2e3RXRsRampm6yyb4OdZHxOU0AW7S2arM/HzXy69GxBeBPwCuyswNEfEq4Crg5cDfZ+Z/TrCpDcCuEfHjzLwNuG2Kn1nSImAok7Qg2i/2/QCwP7BxJupREbFF1+G/W7re8iNgKTBCM7v2soj4o671S3l4qBvPaLut7u2Odr2+sw1kG/2cSU6yj4g/AF4CnAWcBBzQLj+NJjwCvDcz3xsRBwDvBH6bZqbw14Bfzqxl5s0R8RWacHnKePvLzJ9FxMtpZgfPiIhvAG/MzO9O8XNLqpyhTNJCeSPNDNSemfmTiNgN+E+gdI3Zsev5TjSzWGtowtrZmflnM9jvappQd13XdlfPYDtExDBwBk1ASuDaiDg0Mz+RmUcBR3WN3ZJmZvBVwAWZ+YuI+CxdP29EHAjsDVxMczjzz8fbb2ZeBFwUEVvRHML9F5oZN0mLmKFMUj8sbQPMRg8Cj6I5j+zuiHgMzQzSWIdGxFnAzcAJwKcz86GI+ARwRUT8IfBlmlmyvYAbx1woMJ5zaM7buoLmSsl30JzcPxMnAD/KzI8BRMRy4JyIuCgz7xgz9hHAljQn+D/Yzpq9ENh4eHaEJuAdSXNbje9ExAVdh2hpxz2O5uKIi2n6t5bmggRJi5wn+kvqh5U0AWLj413AB4GtaGa+LgO+MM77zgY+BvwEGAb+EiAzbwEOprna8Q6ambP/TW9/094NfAv4Ns2hw6vaZdMSEc+kmclavnFZey+2z9H8bJvIzPva+hP4b+CVwIVdQ1bQzKCtbM+3OxI4PSJ+Y8ymltDMMq4G7gKeA/zFdOuXVJ/S6XQWugZJkqSB50yZJElSBQxlkiRJFTCUSZIkVcBQJkmSVAFDmSRJUgUMZZIkSRUwlEmSJFXAUCZJklQBQ5kkSVIF/j8+cOrZPVXnIgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# ploting the graph\n", "df['B'].plot(kind ='hist', # type of plot\n", " alpha=0.6, # transparency of plot\n", " figsize=(10, 6) # size of plot\n", " )\n", "\n", "# giving titles and labels\n", "plt.title('Title of the Plot')\n", "plt.ylabel('Label on Y-axis')\n", "plt.xlabel('Label on X-axis')\n", "\n", "# showing the plot\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "we can also make the histogram of the whole dataframe as folows." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmQAAAGHCAYAAAAeKU4NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAApMUlEQVR4nO3de5xddX3v/9d3ZiKDVUE7HmHCTWmsRTheigHRo3g9kHIaT498ihYQRFMoWC94rLZ4KVWrLSr0SMEUvIAo/RQo8NMIeCmFakEuRbmVFgUhBA2BgkYZYib798dao+NkJrMnmdlrZu/X8/HYj+y11net9dnzncs733UrrVYLSZIkNaev6QIkSZJ6nYFMkiSpYQYySZKkhhnIJEmSGmYgkyRJapiBTJIkqWEGMklzppRyYCmlVUrZZZp2Hyil3NmhmvYppXy7lDJSSrl7huveXUo5aY5Km27fHfsaSeo8A5mkrVIHrS297ga+BewMrKnXeXG9bI8GS/8r4MfAs4AXTNaglHLSTMPatiil7DHha/dIKeXaUsrybdzu10opn52lMiXNIQOZpK2187jXWHBYOm7eC1qt1oZWq/XDVqu1qaEaJ7ME+OdWq3V3q9V6oOliJlhO9bXbH7gduKiUsn+zJUnqBAOZpK1SB60ftlqtHwIP1bMfGDf/gfGHLOtRsavrdnfV86+cavullFeVUr5ZSnm0lHJfKeUzpZRf31JNpZSdSynnl1Ierte7spSyb71sj1JKC9gTOLne/wcm2cZRwF8Au48bsRrf7nGllNNKKQ+VUn5USjmllNI/YRtvKaX8e31Y9D9LKX9WShnYUu21h+qv3e3Am4HH+GXYnezzvqGUclsp5bFSyupSygfH9lOPjL0CeMO4z3FgGzVIakA7vyAkaTbcSxUuLqEaSbsX2DBZw1LKy+t2fwIcBexIdajxH0spL21N8sy3UkoBLga2Aw4BHgFOAr5aSllS729n4DrgPOBUYP0ku/97qsOZf8AvD2mOb/cW4KPAfsDz623dCnymruMDwNHA24CbgN8CzgQGgfdO9nmnsBH4ObBosoWllN8BPl1/xguB59X7adX7eSvwDOD++j38MjhLmmcMZJI6otVqjZZSfmUkbQvN3wf8TavV+n9jM0opbwB+ADyHKuhM9HKqoPfsVqt1W73OkcDdwB+1Wq2TgR+WUkaB9VPtv9VqPVpKWQ+MTtHm6lar9ZH6/X+WUo4GXg18ppTyeOBdwO+1Wq3L6jZ31RcC/A1tBrJSyiDwbuBJwNemaPZu4MJWq/WX9fR/lFJ2Aj5SSvmLVqv1SCllA/DoNF9rSfOAgUzSfPQCYP9SygmTLFvC5IHs2cCDY2EMoNVqPVZKubZeNlsm7vs+4OnjatgeuLA+PDqmHxgspTx1mvPWriilbKq38V/A28cFu4meTTWaN94/U43E7Ul1DpqkBcJAJmk+6qM6LHjuJMu2NNqz2aFMoEwxf2tNPMza4pfn4479eyjwH5OsO90hw6OBG4BH2rzgYOLnKlPMlzTPGcgkddJYmOnfYiu4nurQ40zuu3UrMFRK2WvcIcvtqA5j/u1W1DldjVPVMAI8o9VqrdqK9e+bwWe+FXgpcPq4eS8BHgW+X09v7eeQ1GFeZSmpk34AbAKWlVL+WyllhynavQ9YXkr5RCnluaWUPUspB5VSzi6lbD/FOt8Avg18oZTyolLK3sA5VIfwzphhnXcBO5VSXlhKGarPDZtWq9VaD3wY+HAp5YRSym+WUp5dSjmslPLRGdYwnb8E/k8p5d2llGeWUgL4APCxVqs1FnzvAn67/voNlVImvUBAUvMMZJI6ptVq/Qh4D9UJ6fdTXUk5Wbt/ojpJfx+qW2V8F/gE8BOqKw8nW6cFvAb4d+DLVFdT7gS8qtVqrZthqRcD/1Bv5wGqE/Xb0mq1/gJ4O/Am4DvAv9TTd8+whun2swp4I/AG4Baqr8/fAn8+rtnHgHV1HQ8AL5rNGiTNnjLJ1eOSJEnqIEfIJEmSGmYgkyRJapiBTJIkqWEGMkmSpIYZyCRJkhq20G8M6yWikiRpISmTzVzogYw1a9a03XZoaIh162Z6OyItFPZv97OPu5v92/16vY+Hh4enXOYhS0mSpIYZyCRJkhpmIJMkSWrYgj+HTJIk9YZWq8XIyAibNm2ilEnPjW9cq9Wir6+PwcHBGdVoIJMkSQvCyMgIixYtYmBgfseXjRs3MjIywvbbb9/2Oh6ylCRJC8KmTZvmfRgDGBgYYNOmTTNax0AmSZIWhPl6mHIyM63VQCZJkjQDX/nKV1i8eDF33nnnrG1z/o/7SZIkTWKHq74wq9t75CWvb6vdxRdfzNKlS7nkkks48cQTZ2XfjpBJkiS16ac//SnXX389p5xyCpdccsmsbbejI2QR0Q9cD9yXmYdMWFaA04BlwM+AozLzxk7WJ0mStCWXXXYZBx54IHvuuSc77rgjN998M/vss882b7fTI2RvBW6fYtnBwJL6tQI4o1NFSZIktePiiy9m+fLlACxfvpyLL754VrbbsRGyiNgF+B3gQ8A7JmmyHDgnM1vANRGxY0TsnJn3d6pGSZKkqTz00EN861vf4o477qCUwujoKKUUTjrppG2+ArSThyxPBd4FPHGK5YuBe8dNr67n/Uogi4gVVCNoZCZDQ0NtFzAwMDCj9t2mf9XKpkuYNaPLVmw2r9f7txfYx93N/u1+29rHP/rRj37lPmR9fbN7oG+6e5xddtllHHrooZxyyim/mPea17yGG264gf333/9X2m633XYzyygzK3XrRMQhwNrMvCEiDpyi2WTRsjVxRmauBMaSRWvdunVt1zE0NMRM2nebHUZGmi5h1jwyST/2ev/2Avu4u9m/3W9b+/ixxx6jv7//F9MzvfnqdDZu3LjF5RdddBHHH3/8r7Q7+OCDueCCC9h33303q3XiZx0eHp5y250aIXsR8LsRsQwYBJ4UEZ/PzMPHtVkN7DpuehdgTYfqkyRJC0y7t6mYLRdccMFm84455phZ2XZHAllmvgd4D0A9QvbOCWEM4FLghIg4H9gPeMTzxyRJUi9o9MawEXEsQGaeCayiuuXFnVS3vTi6wdIkSZI6puOBLDOvBK6s3585bn4LOL7T9UiSJDXNO/VLkiQ1zEAmSZLUMAOZJElSwxo9qV+SJGkh2XXXXXnWs55Fq9Wiv7+fD37wg7zgBS/Y5u0ayCRJ0oJ0zt99e1a3d+Sbl07bZnBwkK9+9asAXHnllXzkIx/hwgsv3OZ9e8hSkiRpK/zkJz9hhx12mJVtOUImSZLUppGREV71qlfx2GOPsXbtWjJzVrZrIJMkSWrT+EOW119/PW9961v5xje+QSmTPZK7fR6ylCRJ2gr77rsvDz30EA8++OA2b8tAJkmStBXuvPNORkdHefKTn7zN2/KQpSRJUpvGziEDaLVanHrqqfT392/zdg1kkiRpQWrnNhWz7d57752T7XrIUpIkqWEGMkmSpIYZyCRJkhpmIJMkSWqYgUySJKlhBjJJkqSGGcgkSZJmYO3atRx33HEccMABHHjggRxxxBF873vf26Zteh8ySZK0IK2854pZ3d6K3V49bZtWq8UxxxzDoYceyhlnnAHALbfcwrp169hzzz23et8GMkmSpDZ985vfZNGiRRx55JG/mLf33ntv83Y9ZClJktSmO+64g3322WfWt2sgkyRJapiBTJIkqU3PfOYzufnmm2d9uwYySZKkNr34xS9mw4YNnHfeeb+Yd9NNN/Gv//qv27RdA5kkSVKbSimcddZZXHXVVRxwwAG87GUv42Mf+xhPe9rTtmm7XmUpSZIWpHZuUzEXdtppJz71qU/N6jYdIZMkSWqYgUySJKlhBjJJkqSGdeQcsogYBK4Ctqv3eUFmvn9CmwOBS4C76lkXZebJnahPkiTNf61Wq+kS2jbTWjt1Uv9jwMszc31ELAL+JSK+kpnXTGh3dWYe0qGaJEnSAtLX18fGjRsZGJjf1yRu3LiRvr6ZHYTsyCfKzBawvp5cVL8WTsyVJEmNGxwcZGRkhMcee4xSStPlTKrVatHX18fg4OCM1utYxIyIfuAG4DeA0zPz2kmavTAivgOsAd6ZmbdOsp0VwAqAzGRoaKjtGgYGBmbUvtv0z/CbYz5bNEk/9nr/9gL7uLvZv93PPp5a6fTx2IjYEfhH4C2Zecu4+U8CNtWHNZcBp2Xmkmk211qzZk3b+x4aGmLdunVbUXV32OGqLzRdwqx55CWv32xer/dvL7CPu5v92/16vY+Hh4cBJh3a6/hVlpn5MHAlcNCE+T/OzPX1+1XAoogwRkuSpK7XkUAWEU+tR8aIiO2BVwL/PqHNThFR6vdL69oe7ER9kiRJTerUOWQ7A5+rzyPrAzIzvxQRx1JNnAm8FjguIjYCjwKH1RcDSJIkdbWOn0M2yzyHbAY8h0wLnX3c3ezf7tfrfTyvziGTJEnSrzKQSZIkNcxAJkmS1DADmSRJUsMMZJIkSQ0zkEmSJDXMQCZJktQwA5kkSVLDDGSSJEkNM5BJkiQ1zEAmSZLUMAOZJElSwwxkkiRJDTOQSZIkNcxAJkmS1DADmSRJUsMMZJIkSQ0zkEmSJDXMQCZJktQwA5kkSVLDDGSSJEkNM5BJkiQ1zEAmSZLUMAOZJElSwwxkkiRJDTOQSZIkNcxAJkmS1DADmSRJUsMMZJIkSQ0b6MROImIQuArYrt7nBZn5/gltCnAasAz4GXBUZt7YifokSZKa1KkRsseAl2fmc4DnAgdFxP4T2hwMLKlfK4AzOlSbJElSozoSyDKzlZnr68lF9as1odly4Jy67TXAjhGxcyfqkyRJalJHDlkCREQ/cAPwG8DpmXnthCaLgXvHTa+u593fmQolSZKa0bFAlpmjwHMjYkfgHyNi78y8ZVyTMslqE0fRiIgVVIc0yUyGhobarmFgYGBG7bvNGVf3N13CrGn94LubzSt9hdamzb5l5r0/evvLmy5hVnz8tovmfB99D/SxqbVpzvfTTd6x1+81XULbev13dC+wj6fWsUA2JjMfjogrgYOA8YFsNbDruOldgDWTrL8SWFlPttatW9f2voeGhphJ+24zOjradAmzZsPIyGbzBgcHGZlk/nzXLd+TnfjaL9Q+btJC+v7q9d/RvaDX+3h4eHjKZZ26yvKpwM/rMLY98ErgoxOaXQqcEBHnA/sBj2SmhyslSVLX69QI2c7A5+rzyPqAzMwvRcSxVBNnAquobnlxJ9VtL47uUG2SJEmN6kggy8zvAs+bZP6Z4963gOM7UY8kSdJ84p36JUmSGmYgkyRJapiBTJIkqWEGMkmSpIYZyCRJkhpmIJMkSWqYgUySJKlhBjJJkqSGGcgkSZIaZiCTJElqmIFMkiSpYQYySZKkhhnIJEmSGmYgkyRJapiBTJIkqWEGMkmSpIYZyCRJkhpmIJMkSWqYgUySJKlhBjJJkqSGGcgkSZIatlWBLCKeERG7z3YxkiRJvaitQBYRX4yIA+r3RwO3ArdFxDFzWZwkSVIvaHeE7BXA9fX7dwCvBJYC756LoiRJknrJQJvtHpeZGyJiMfCUzPwmQEQ8be5KkyRJ6g3tBrKbIuI9wO7AlwHqcPbjuSpMkiSpV7R7yPIYYB9ge+Cket4LgfPmoihJkqRe0tYIWWZ+D3j9hHkXABfMRVGSJEm9ZMpAFhFHZOa59fs3TtUuMz89F4VJkiT1ii2NkL0OOLd+f8QUbVqAgUySJGkbTBnIMnPZuPcv25adRMSuwDnATsAmYGVmnjahzYHAJcBd9ayLMvPkbdmvJEnSQtDujWFfMsX817W5n43AiZn5W8D+wPERsdck7a7OzOfWL8OYJEnqCe3e9uLCiPg0cFJm/jwidgQ+BTwP+OJ0K2fm/cD99fufRMTtwGLgtq2qWpIkqYu0e9uL5wDPBa6rH5d0M/AwVSCbkYjYo17v2kkWvzAivhMRX4mIZ89025IkSQtRu7e9WBMRr6EKUSuBszPzD2e6s4h4AnAh8LbMnHhT2RuB3TNzfUQsAy4GlkyyjRXAirouhoaG2t7/wMDAjNp3m/7+/qZLmDWDg4ObzSt9ZdL58123fE8Orp37r31f6VuQfdykhfT91eu/o3uBfTy10mq1pm0UEc+lugnsfwJnAacC1wHHZebD7ewoIhYBXwIuz8yPt9H+bmDfzFy3hWatNWvWtLN7oPrFtG7dljbX3c4/+QtNlzBrNuz8G5vNGxwcZGRkpIFqts2Rb17adAmzYuU9V8z5PhZqHzdpxW6vbrqEtvX67+he0Ot9PDw8DFAmW9buIcuvAx/PzNdk5peoDmH+jOrQ5bQiogBnA7dPFcYiYqe6HRGxtK7twTbrkyRJWrDaPan/BZn5/bGJzPwpcExE/G6b67+I6l5mN0fETfW8PwV2q7d3JvBa4LiI2Ag8ChyWmdMP30mSJC1w7Z5D9v0p5l/a5vr/whRDdOPafBL4ZDvbkyRJ6iZtBbKIeBLwAeClwBDjwlVm7jYnlUmSJPWIds8h+1vg+cDJwFOAtwD3AJ+Yo7okSZJ6RruB7NXA/8nMS4DR+t/fZ+pnXEqSJKlN7QayPuCR+v36+k799wOb33tAkiRJM9LuVZbfoTp/7OvA1cDpwHrgP+aoLkmSpJ7R7gjZm4G76/d/THVbih2BI2e/JEmSpN4y49teZOYDwJvmrCJJkqQe0+4I2S9ERFt355ckSVJ7ZhzIgN1nvQpJkqQetsVAFhHPnmT2Fu+4L0mSpJmZboTsWxHx3ojoHzfv4LksSJIkqddMF8heALwCuCEinge/eC6lJEmSZskWr7LMzP8ADoyIPwQuj4hzgNsmtPn0HNYnSZLU9dq9MeylwKHAa4G7xs1vAQYySZKkbTBtIIuINwF/CXwWOCQzR+a6KEmSpF6yxUAWEV8Dngb8TmZ+uzMlSZIk9ZbpTuq/Bvhtw5gkSdLcme6k/pM6VYgkSVKv2po79UuSJGkWGcgkSZIaZiCTJElqWLv3ISMidgB+E3jC+PmZ+Y3ZLkqSJKmXtBXIIuIo4HRgPfCzcYtawDNmvyxJkqTe0e4I2YeA12bmV+ayGEmSpF7U7jlkA8AVc1mIJElSr2o3kH0UOCkivAhAkiRplrV7yPLtwE7AuyLiwfELMnO3Wa9KkiSph7QbyA6f0yokSZJ6WFuBLDP/ea4LkSRJ6lXt3vZiEXAScAQwDKwBzgU+lJkb5q48SZKk7tfuIcu/ApYCxwI/AHYH3gs8ier8si2KiF2Bc6jOQ9sErMzM0ya0KcBpwDKqe50dlZk3tlmfJEnSgtXuVZOHAr+bmVdk5h2ZeQXwv4Foc/2NwImZ+VvA/sDxEbHXhDYHA0vq1wrgjDa3LUmStKC1G8jKDOf/isy8f2y0KzN/AtwOLJ7QbDlwTma2MvMaYMeI2LnN+iRJkhasdg9Z/gPw/0XEnwP3UB2yPAnIme4wIvYAngdcO2HRYuDecdOr63n3T1h/BdUIGpnJ0NBQ2/seGBiYUfsx/atWznid+ai/v7/pEmbN9mvv2mxeKYXtW60Gqtk2Q0PLmi5hVgyuHZzzffSVPgYH534/3eSctVc1XULb+h7oY1Nr05TL37HX73WwGs2Frf073AvaDWTvogpgp1Od1H8fcD7wwZnsLCKeAFwIvC0zfzxh8WSjbZv9dc3MlcBYQmqtW7eu7f0PDQ0xk/ZjdhgZmfE689HoaNMVzK3+/n5GF+CH3JrvyflopAM/J4ODgx3Zj5oxXf92y89KL9vav8PdYnh4eMpl7d72YgPwvvq1VeorNS8EzsvMiyZpshrYddz0LlRXc0qSJHW1dkfItkl9BeXZwO2Z+fEpml0KnBAR5wP7AY9k5v1TtJUkSeoaHQlkwIuo7mF2c0TcVM/7U2A3gMw8E1hFdcuLO6lue3F0h2qTJElqVEcCWWb+C9NckZmZLeD4TtQjSZI0n7R72wtJkiTNkSlHyCLije1sIDM/PXvlSJIk9Z4tHbI8oo31W4CBTJIkaRtMGcgy82WdLESSJKlXtX1Sf0T8OtVVkDtl5l9HxDDQl5mr56w6SZKkHtDWSf0R8VLgDuAP+OXNYZfgA8AlSZK2WbtXWZ4K/H5mHgRsrOddCyydi6IkSZJ6SbuBbI/M/Hr9fuz5khvo3I1lJUmSula7gey2iPifE+a9Erh5luuRJEnqOe2OcJ0IfCkivgxsHxGfAv4XsHzOKpMkSeoRbY2QZeY1wHOAW6nuO3YXsDQzr5vD2iRJknpC249Oysz7gL8GPgB81NtdSJIkzY62DllGxI7A/wMOBRYBP4+IfwDempkPzV15kiRJ3a/dEbLPANsDzwOeWP+7HT42SZIkaZu1e1L/y4CdM/PRevr2iDgKWDMnVUmSJPWQdkfI7gD2mDBvt3q+JEmStsGUI2QR8cZxk18HroiIc4F7gV2Bw4Fz57Y8SZKk7relQ5ZHTJi+E3hh/QL43rj3kiRJ2kpTBrLMfFknC5EkSepVM34WZUQUoIxNZ+amWa1IkiSpx7R7H7LFwCeBlwA7TljcP8s1SZIk9ZR2r7I8E9gAvAJYDzwfuBQ4do7qkiRJ6hntBrIDgDdm5k1AKzO/AxxD9dBxSZIkbYN2A9kosLF+/3BEPBX4KbB4TqqSJEnqIe0GsmuBZfX7y4G/By4Crp+LoiRJknpJu1dZHsEvw9vbqA5VPhH4xBzUJEmS1FPaCmSZ+fC4948CH4yIfuD9wPvmpjRJkqTe0O4hy8kMAH82W4VIkiT1qm0JZDDuBrGSJEnaOtsayFqzUoUkSVIP2+I5ZBHx8i0sfly7O4mITwOHAGszc+9Jlh8IXALcVc+6KDNPbnf7kiRJC9l0J/WfPc3ye9rcz2epHr10zhbaXJ2Zh7S5PUmSpK6xxUCWmU+fjZ1k5lURscdsbEuSJKnbtHsfsk54YUR8B1gDvDMzb52sUUSsAFYAZCZDQ0Nt72BgYGBG7cf0Dw7OeJ35qL//502XMKdKKfT3L7xn3W/N9+R8NLh27n9O+kofg13y86jNTde/3fKz0su29u9wL5gvgexGYPfMXB8Ry4CLgSWTNczMlcDKerK1bt26tncyNDTETNqP2WFkZMbrzEejo01XMLf6+/sZXYAfcmu+J+ejkQ78nAwODnZkP2rGdP3bLT8rvWxr/w53i+Hh4SmXbetVlrMiM3+cmevr96uARRFhhJYkST1hXgSyiNgpIkr9filVXQ82W5UkSVJndOSQZUR8ETgQGIqI1VSPXFoEkJlnAq8FjouIjcCjwGGZ6T3OJElST+hIIMvM102z/JNUt8WQJEnqOfPikKUkSVIvM5BJkiQ1zEAmSZLUMAOZJElSwwxkkiRJDTOQSZIkNcxAJkmS1DADmSRJUsMMZJIkSQ0zkEmSJDXMQCZJktQwA5kkSVLDDGSSJEkNM5BJkiQ1zEAmSZLUMAOZJElSwwxkkiRJDTOQSZIkNcxAJkmS1DADmSRJUsMMZJIkSQ0zkEmSJDXMQCZJktQwA5kkSVLDDGSSJEkNM5BJkiQ1zEAmSZLUMAOZJElSwwxkkiRJDTOQSZIkNWygEzuJiE8DhwBrM3PvSZYX4DRgGfAz4KjMvLETtUmSJDWtUyNknwUO2sLyg4El9WsFcEYHapIkSZoXOhLIMvMq4KEtNFkOnJOZrcy8BtgxInbuRG2SJElN68ghyzYsBu4dN726nnf/xIYRsYJqFI3MZGhoqO2dDAwMzKj9mDOu7p/xOvNRf3d8jCmVUuhfgB/y3Rd3yYDwE5489/soQGvud7PXfx+e+51oM32lj8HBwSmX/8OH/r6D1cyd4z5xfNMlzJqP33bRjNr3PdDHptamOapm27xjr99rdP/zJZCVSeZN+ms3M1cCK8farFu3ru2dDA0NMZP2Y0ZHR2e8jjqvv79/QfZVq9WBhNEBm0Y3zvk++vsHGO3AfkZGRuZ8H9rc4ODgFr/2j1uAP9+T2Zq/Q/PVTH9WpuvjJnWiX4aHp/7P3ny5ynI1sOu46V2ANQ3VIkmS1FHzZYTsUuCEiDgf2A94JDM3O1wpSZLUjTp124svAgcCQxGxGng/sAggM88EVlHd8uJOqtteHN2JuiRJkuaDjgSyzHzdNMtbQPec5ShJkjQD8+UcMkmSpJ5lIJMkSWqYgUySJKlhBjJJkqSGGcgkSZIaZiCTJElqmIFMkiSpYQYySZKkhhnIJEmSGmYgkyRJapiBTJIkqWEGMkmSpIYZyCRJkhpmIJMkSWqYgUySJKlhBjJJkqSGGcgkSZIaZiCTJElqmIFMkiSpYQYySZKkhhnIJEmSGmYgkyRJapiBTJIkqWEGMkmSpIYZyCRJkhpmIJMkSWqYgUySJKlhBjJJkqSGGcgkSZIaZiCTJElq2ECndhQRBwGnAf3AWZn5kQnLDwQuAe6qZ12UmSd3qj5JkqSmdCSQRUQ/cDrwKmA1cF1EXJqZt01oenVmHtKJmiRJkuaLTh2yXArcmZnfz8wNwPnA8g7tW5IkaV7r1CHLxcC946ZXA/tN0u6FEfEdYA3wzsy8dWKDiFgBrADITIaGhtouYmBgYEbtx/T39894HXVeKWVB9lUppekSZkV/fwd+nZTO7GdwcHDO96HN9ZW+LX7tF+LP92S25u/QfDW4dmY/K9P1cZOa7pdOBbLJ/uK0JkzfCOyemesjYhlwMbBk4kqZuRJYObaNdevWtV3E0NAQM2k/ZnR0dMbrqPP6+/sXZF+1WhN/FBamTaMb53wf/f0DjHZgPyMjI3O+D21ucHBwi1/7xy3An+/JbM3foflqpj8r0/VxkzrRL8PDw1Mu69Qhy9XAruOmd6EaBfuFzPxxZq6v368CFkVE9/w3QpIkaQqdGiG7DlgSEU8H7gMOA14/vkFE7AT8KDNbEbGUKiw+2KH6JEmSGtOREbLM3AicAFwO3F7Nylsj4tiIOLZu9lrglvocsr8BDsvM7jiWI0mStAUduw9ZfRhy1YR5Z457/0ngk52qR5Ikab7wTv2SJEkNM5BJkiQ1zEAmSZLUMAOZJElSwwxkkiRJDTOQSZIkNcxAJkmS1DADmSRJUsMMZJIkSQ0zkEmSJDXMQCZJktQwA5kkSVLDDGSSJEkNM5BJkiQ1zEAmSZLUMAOZJElSwwxkkiRJDTOQSZIkNcxAJkmS1DADmSRJUsMMZJIkSQ0zkEmSJDXMQCZJktQwA5kkSVLDDGSSJEkNM5BJkiQ1zEAmSZLUMAOZJElSwwxkkiRJDRvo1I4i4iDgNKAfOCszPzJheamXLwN+BhyVmTd2qj5JkqSmdGSELCL6gdOBg4G9gNdFxF4Tmh0MLKlfK4AzOlGbJElS0zp1yHIpcGdmfj8zNwDnA8sntFkOnJOZrcy8BtgxInbuUH2SJEmN6VQgWwzcO256dT1vpm0kSZK6TqfOISuTzGttRRsiYgXVIU0yk+Hh4RkVMtP2AO84850zXkeSNMv2b7oATfSB4aOaLqFrdGqEbDWw67jpXYA1W9GGzFyZmftm5r5UIa7tV0TcMNN1fC2cl/3b/S/7uLtf9m/3v+xjClPo1AjZdcCSiHg6cB9wGPD6CW0uBU6IiPOB/YBHMvP+DtUnSZLUmI6MkGXmRuAE4HLg9mpW3hoRx0bEsXWzVcD3gTuBvwP+qBO1SZIkNa1j9yHLzFVUoWv8vDPHvW8Bx89xGSvnePtqlv3b/ezj7mb/dj/7eAql1drsvHlJkiR1kI9OkiRJaljHDlk2abrHNmn+i4hdgXOAnYBNwMrMPC0ingL8PbAHcDcQmflf9TrvAY4BRoE/zszLGyhdM1Q/2eN64L7MPMQ+7h4RsSNwFrA31W2N3gjcgf3bNSLi7cCbqPr3ZuBo4PHYx9Pq+hGyNh/bpPlvI3BiZv4W1d2Ijq/78d3A1zNzCfD1epp62WHAs4GDgL+tvxc0/72V6uKfMfZx9zgNuCwznwU8h6qf7d8uERGLgT8G9s3MvakGQQ7DPm5L1wcy2ntsk+a5zLx/7GHzmfkTql/ki6n68nN1s88Br6nfLwfOz8zHMvMuqqt3l3a0aM1YROwC/A7VKMoY+7gLRMSTgJcAZwNk5obMfBj7t9sMANtHxADVyNga7OO29EIg85FMXSYi9gCeB1wLPG3sfnX1v/+tbma/L0ynAu+iOiw9xj7uDs8AHgA+ExH/FhFnRcSvYf92jcy8DzgFuAe4n+p+oldgH7elFwLZZHfF9dLSBSoingBcCLwtM3+8hab2+wITEYcAazPzhjZXsY8XlgHg+cAZmfk84KfUh66mYP8uMBHxZKpRr6cDw8CvRcThW1jFPh6nFwJZW49k0vwXEYuowth5mXlRPftHEbFzvXxnYG09335feF4E/G5E3E11asHLI+Lz2MfdYjWwOjOvracvoApo9m/3eCVwV2Y+kJk/By4CDsA+bksvXGXZzmObNM9FRKE69+T2zPz4uEWXAm8APlL/e8m4+V+IiI9T/U9tCfDtzlWsmcrM9wDvAYiIA4F3ZubhEfHX2McLXmb+MCLujYjfzMw7gFcAt9Uv+7c73APsHxGPBx6l6uPrqUZD7eNpdP0I2VSPbWq2Km2FFwFHUI2a3FS/llH9gL8qIv4TeFU9Td3HSfXL/jLg+MwcbaZ0bSP7uHu8BTgvIr4LPBf4MPZv16hHPy8AbqS65UUf1Z357eM2eKd+SZKkhnX9CJkkSdJ8ZyCTJElqmIFMkiSpYQYySZKkhhnIJEmSGtYL9yGTtABFxJXA5zPzrOnazua681FE7EZ1a4Adevm2AFI3M5BJmlP1nffflJlfa7qW2RQR/cC/Ahdn5ofHzbuW6oHJp8zWvjLzHuAJs7U9SfOPhywlaSvUI1VvBN4dEc+qZ7+T6ll8n2isMEkLkiNkkhpRP4j4XGA/qt9F3wSOzczV45rtGRHfBn4TuBI4OjMfqtffH/g4sBfwA+CtmXllG/vdDvgoEPWsBP4kMx+rH9n0eapA9SfAKPCnmfmZybaVmbfUj305OyLeBPwp8OKpDitGxNHAu6ie2fcA8NHM/FS97E+A/12vvzEijqN6yshvAzsBdwGL6mVHAe8DngqsA07KzPOm++yS5i9HyCQ1pQ/4DLA7sBvVs+8+OaHNkVSjUMPARuBvACJiMfBl4IPAU6hGpi6MiKe2sd8/A/anenTPc4ClwEnjlu8E7AAsBo4BTq/D41Q+DDwJuBo4NTNv3kLbtcAhdfujgU9ExPPrZX8NbABOiogl9XYPz8yR8RuIiF+j+jocnJlPpHp4801b/siS5jtHyCQ1IjMfBC4cm46IDwH/NKHZuZl5S738vcBNEfEG4HBgVWauqtt9NSKuB5YBn5tm138AvCUz19bb/XPgU8B76+U/B06un4O7KiLWU43QXTPF59gQEddShbctjlJl5pfHTf5zRFwB/A/gxszcFBFHUj0H8PeBv8rMf5tiU5uAvSPinsy8H7h/ms8saZ4zkElqREQ8nurQ4EHA2AjUEyOif9whv3vHrfIDYBEwRDWqdmhE/K9xyxexeaCbzHC9rfHbHR43/WAdxsb8jC2cUB8R/wN4DXAOcBpwcD3/TKrgCPDhzPxwRBwMvB94JtUI4eOpHsIMQGbeHRH/RBUsT59sf5n504j4fapRwbMj4pvAiZn579N8bknzmIFMUlNOpBp52i8zfxgRzwX+DSjj2uw67v1uVKNX66iC2rmZ+eat2O8aqkB367jtrtmK7RARg8DZVOEogVsi4vDM/HxmHgscO67tdlQjgkcCl2TmzyPiYsZ93ohYBrwQ+DrVIcw/nGy/mXk5cHlEbE912PbvqEbaJC1QBjJJnbCoDi9jNgJPpDpv7OGIeArVyNFEh0fEOcDdwMnABZk5GhGfB66LiP8JfI1qdGx/4M4JFwVM5otU52ldR3VF5PuoTuTfGicDP8jMzwJExArgixFxeWY+MKHt44DtqE7m31iPlr0aGDskO0QV7o6hunXGzRFxybjDstTtnkZ1IcTXqb5+66kuPpC0gHlSv6ROWEUVHsZeHwBOBbanGvG6BrhskvXOBT4L/BAYBP4YIDPvBZZTXdX4ANWI2f+lvd9pHwSuB75LdbjwxnrejETEvlQjWCvG5tX3WvsS1Wf7FZn5k7r+BP4LeD1w6bgmK6lGzlbV59cdA5wVEb8+YVN9VKOLa4CHgJcCfzTT+iXNL6XVajVdgyRJUk9zhEySJKlhBjJJkqSGGcgkSZIaZiCTJElqmIFMkiSpYQYySZKkhhnIJEmSGmYgkyRJapiBTJIkqWH/PwvlwiVhWYTZAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "df.plot(kind ='hist', \n", " figsize=(10, 6),\n", " alpha=0.6,\n", " color=['coral', 'darkslateblue', 'mediumseagreen'] # different colours for different columns\n", " )\n", "plt.title('Title of the Plot')\n", "plt.ylabel('Label on Y-axis')\n", "plt.xlabel('Label on X-axis')\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To change the markings on the x-axis, we need to pass a list as `xticks` parameter. And for changing bin size, pass an integer as `bins` parameter." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnEAAAGHCAYAAADfrgShAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAsTUlEQVR4nO3deZxkdX3v/9e3u0cao4KmjTAsogQXxJ+oiLhcxfUC4YrxyidoBEF0AgGDij+jCS4hajRxAa8EnIALaCQfgQBXEXEJggsoEJRNIgrKMOgwEJFRGpyZun+c01g0vVQ3tfQpXs/Hox9UnfrWOZ9PVfX0m++pc05ptVpIkiSpWUYGXYAkSZIWzhAnSZLUQIY4SZKkBjLESZIkNZAhTpIkqYEMcZIkSQ1kiJPUM6WU3UsprVLK1vOMe08p5bo+1fTkUsr3SimTpZQbFvjcG0opR/WotPm23bfXSFIzGOIkLUodzub6uQH4DrAlsLp+znPrx7YbYOn/CPwaeALwjJkGlFKOWmjAuz9KKdtNe+1uL6VcXErZ536u92ullE93qUxJS4whTtJibdn2MxU2dm1b9oxWq3V3q9X6RavV2jigGmeyA/DNVqt1Q6vVumXQxUyzD9VrtxtwDXBGKWW3wZYkaakyxElalDqc/aLVav0CuK1efEvb8lvad6fWs28X1uOur5efP9v6SykvKaV8u5RyZynlplLKp0opfzhXTaWULUspp5ZSflU/7/xSyi71Y9uVUlrA9sDR9fbfM8M6DgT+Hnh028xY+7gHlVKOLaXcVkr5ZSnlQ6WU0WnreGMp5Uf1Ltsfl1L+tpQyNlfttdvq1+4a4A3AXfw+IM/U72tLKVeXUu4qpawqpbx3ajv1DNyLgNe29bF7BzVIaohO/lGRpG64kSqQnEU1Y3cjcPdMA0spL6zH/TVwILA51W7Qfy+lPL81w/UCSykFOBPYBNgbuB04CvhqKWWHentbAt8HPgccA6ybYfP/RrWr9c/5/e7W9nFvBD4IPBN4Wr2uq4BP1XW8BzgIeBNwOfBE4ARgHHjnTP3OYj3wO2DZTA+WUv4E+GTd4+nAU+vttOrtHAE8Fri5vg2/D9uShoAhTlJftFqtDaWUe83YzTH8XcDHWq3W/5laUEp5LfAz4ClU4Wi6F1KFwye1Wq2r6+ccANwA/GWr1Toa+EUpZQOwbrbtt1qtO0sp64ANs4y5sNVqfaC+/eNSykHAS4FPlVIeDLwNeEWr1Tq3HnN9fTDEx+gwxJVSxoG3Aw8DvjbLsLcDp7darX+o7/9XKWUL4AOllL9vtVq3l1LuBu6c57WW1FCGOElL0TOA3Uoph8/w2A7MHOKeBNw6FeAAWq3WXaWUi+vHumX6tm8CHtNWw6bA6fWu2ymjwHgp5ZHzfA/vvFLKxnod/w28uS0MTvckqlnDdt+kmvHbnuo7dZKGmCFO0lI0QrXL8pQZHptrVuk+u1mBMsvyxZq+C7jF779fPPXffYH/muG58+3OPAi4FLi9w4MupvdVZlkuaQgZ4iT101QAGp1zFFxCtVt0IedFuwqYKKXs2LY7dROqXaz/vIg656txthomgce2Wq1zFvH8mxbQ81XA84Hj2pY9D7gT+Gl9f7F9SGoAj06V1E8/AzYCe5VS/qiUstks494F7FNK+WgpZedSyvallD1KKSeVUjad5TnfAL4H/Gsp5TmllJ2Ak6l2Lx6/wDqvB7YopTyrlDJRf9dtXq1Wax3wfuD9pZTDSymPL6U8qZSyXynlgwusYT7/APzvUsrbSymPK6UE8B7gw61WayosXw88vX79JkopMx4kIamZDHGS+qbVav0SeAfVl/JvpjoCdaZx/0F1oMKTqU5L8kPgo8AdVEdszvScFvBy4EfAl6iOQt0CeEmr1Vq7wFLPBL5Qr+cWqoMVOtJqtf4eeDPweuAHwLfq+zcssIb5tnMO8DrgtcCVVK/PPwN/1zbsw8Dauo5bgOd0swZJg1VmOFJfkiRJS5wzcZIkSQ1kiJMkSWogQ5wkSVIDGeIkSZIayBAnSZLUQE0/2a+H1kqSpCYp8w/pTNNDHKtXrx50CQM1MTHB2rULPQVWM9hbMw1rb8PaF9hbUw1rb8PaF8Dy5cu7uj53p0qSJDWQIU6SJKmBDHGSJEkN1PjvxEmSpAeGVqvF5OQkGzdupJSuHR/QVa1Wi5GREcbHx3teoyFOkiQ1wuTkJMuWLWNsbGnHl/Xr1zM5Ocmmm27a0+24O1WSJDXCxo0bl3yAAxgbG2Pjxo09344hTpIkNcJS3YU6k37UaoiTJElagC9/+ctstdVWXHfddQOtY+nPSUqSJM1gswv+tavru/15r+5o3Jlnnsmuu+7KWWedxZFHHtnVGhbCmThJkqQO/eY3v+GSSy7hQx/6EGedddZAa+nrTFxEjAKXADdl5t7THivAscBewG+BAzPzsn7WJ0mSNJdzzz2X3Xffne23357NN9+cK664gic/+ckDqaXfM3FHANfM8tiewA71zwrg+H4VJUmS1IkzzzyTffbZB4B99tmHM888c2C19G0mLiK2Bv4EeB/wlhmG7AOcnJkt4KKI2DwitszMm/tVoyRJ0mxuu+02vvOd73DttddSSmHDhg2UUjjqqKMGcuRsP3enHgO8DXjoLI9vBdzYdn9VvexeIS4iVlDN1JGZTExMdL3QJhkbG7vXazB6zsoBVrN4G/ZacZ9l03sbJvbWPMPaF9hbUw1rb3P19ctf/vJe54kbGenuDsX5zkF37rnnsu+++/KhD33onmUvf/nLufTSS9ltt93uNXaTTTbp+fvTlxAXEXsDazLz0ojYfZZhM0XY1vQFmbkSmEoqrbVr13anyIaamJig/TXYbHJygNUs3u0zvI/Texsm9tY8w9oX2FtTDWtvc/V11113MTo6es/9bp9Qd/369XM+fsYZZ3DYYYfda9yee+7Jaaedxi677HKfWqf3sXz58u4VS/9m4p4DvCwi9gLGgYdFxGcz8zVtY1YB27Td3xpY3af6JElSw3R6SpBuOe200+6z7OCDD+5rDe36EuIy8x3AOwDqmbi3TgtwAGcDh0fEqcAzgdv9PpwkSdLMBnqy34g4BCAzTwDOoTq9yHVUpxg5aIClSZIkLWl9D3GZeT5wfn37hLblLeCwftcjSZLURF6xQZIkqYEMcZIkSQ1kiJMkSWqggR7YIEmS1CTbbLMNT3jCE2i1WoyOjvLe976XZzzjGQOpxRAnSZIa6eR/+V5X13fAG3add8z4+Dhf/epXATj//PP5wAc+wOmnn97VOjrl7lRJkqRFuOOOO9hss80Gtn1n4iRJkjo0OTnJS17yEu666y7WrFlDZg6sFkOcJElSh9p3p15yySUcccQRfOMb36CUmS4B31vuTpUkSVqEXXbZhdtuu41bb711INs3xEmSJC3Cddddx4YNG3j4wx8+kO27O1WSJKlDU9+JA2i1WhxzzDGMjo4OpBZDnCRJaqROTgnSbTfeeGPftzkbd6dKkiQ1kCFOkiSpgQxxkiRJDWSIkyRJaiBDnCRJUgMZ4iRJkhrIECdJkrQAa9as4dBDD+XZz342u+++O/vvvz8/+clP+l6H54mTJEmNtPLn53V1fSu2fem8Y1qtFgcffDD77rsvxx9/PABXXnkla9euZfvtt+9qPfMxxEmSJHXo29/+NsuWLeOAAw64Z9lOO+00kFrcnSpJktSha6+9lic/+cmDLgMwxEmSJDWSIU6SJKlDj3vc47jiiisGXQZgiJMkSerYc5/7XO6++24+97nP3bPs8ssv57vf/W7fazHESZIkdaiUwoknnsgFF1zAs5/9bF7wghfw4Q9/mEc96lF9r8WjUyVJUiN1ckqQXthiiy34xCc+MZBtt3MmTpIkqYEMcZIkSQ1kiJMkSWqgvnwnLiLGgQuATeptnpaZ7542ZnfgLOD6etEZmXl0P+qTJElLX6vVGnQJHetHrf06sOEu4IWZuS4ilgHfiogvZ+ZF08ZdmJl796kmSZLUICMjI6xfv56xsaV9XOb69esZGen9zs6+vAqZ2QLW1XeX1T/NidOSJGngxsfHmZyc5K677qKUMuhyZtRqtRgZGWF8fLzn2+pblI2IUeBS4I+B4zLz4hmGPSsifgCsBt6amVfNsJ4VwAqAzGRiYqKHVS99Y2Nj93oNRvvwoemFZTO8j9N7Gyb21jzD2hfYW1MNa2/D2lcvlH7vX46IzYF/B96YmVe2LX8YsLHe5boXcGxm7jDP6lqrV6/uXbENMDExwdq1a++5v9kF/zrAahbv9ue9+j7Lpvc2TOyteYa1L7C3phrW3oa1L4Dly5cDdG0Kse9Hp2bmr4DzgT2mLf91Zq6rb58DLIsIo7gkSdIM+hLiIuKR9QwcEbEp8GLgR9PGbBERpb69a13brf2oT5IkqWn69Z24LYHP1N+LGwEyM78YEYdQ3TkBeCVwaESsB+4E9qsPiJAkSdI0/To69YfAU2dYfkLb7Y8DH+9HPZIkSU3nFRskSZIayBAnSZLUQIY4SZKkBjLESZIkNZAhTpIkqYEMcZIkSQ1kiJMkSWogQ5wkSVIDGeIkSZIayBAnSZLUQIY4SZKkBjLESZIkNZAhTpIkqYEMcZIkSQ1kiJMkSWogQ5wkSVIDGeIkSZIayBAnSZLUQIY4SZKkBjLESZIkNZAhTpIkqYEMcZIkSQ1kiJMkSWogQ5wkSVIDGeIkSZIayBAnSZLUQIY4SZKkBjLESZIkNZAhTpIkqYHG+rGRiBgHLgA2qbd5Wma+e9qYAhwL7AX8FjgwMy/rR32SJElN06+ZuLuAF2bmU4CdgT0iYrdpY/YEdqh/VgDH96k2SZKkxulLiMvMVmauq+8uq39a04btA5xcj70I2DwituxHfZIkSU3Tl92pABExClwK/DFwXGZePG3IVsCNbfdX1ctu7k+FkiRJzdG3EJeZG4CdI2Jz4N8jYqfMvLJtSJnhadNn64iIFVS7W8lMJiYmelFuY4yNjd3rNTj+wtEBVrN4rZ/98D7LykihtfE+H4El5y/f/MIFP2f6+zYIH7n6jJ6sd+SWETa2NvZk3YN0f/t6y46v6GI13bUUPo+9Ym/NM6x99ULfQtyUzPxVRJwP7AG0h7hVwDZt97cGVs/w/JXAyvpua+3atT2qtBkmJiZofw02bNgwwGoW7+7JyfssGx8fZ3KG5UvNYj6D09+3QejVa9uU922h7m9fg36/57IUPo+9Ym/NM6x9ASxfvryr6+vX0amPBH5XB7hNgRcDH5w27Gzg8Ig4FXgmcHtmuitVkiRpBv2aidsS+Ez9vbgRIDPzixFxCNWdE4BzqE4vch3VKUYO6lNtkiRJjdOXEJeZPwSeOsPyE9put4DD+lGPJElS03nFBkmSpAYyxEmSJDWQIU6SJKmBDHGSJEkNZIiTJElqIEOcJElSAxniJEmSGsgQJ0mS1ECGOEmSpAYyxEmSJDWQIU6SJKmBDHGSJEkNZIiTJElqIEOcJElSAxniJEmSGsgQJ0mS1ECGOEmSpAYyxEmSJDWQIU6SJKmBDHGSJEkNZIiTJElqoEWFuIh4bEQ8utvFSJIkqTMdhbiI+HxEPLu+fRBwFXB1RBzcy+IkSZI0s05n4l4EXFLffgvwYmBX4O29KEqSJElzG+tw3IMy8+6I2Ap4RGZ+GyAiHtW70iRJkjSbTkPc5RHxDuDRwJcA6kD3614VJkmSpNl1ujv1YODJwKbAUfWyZwGf60VRkiRJmltHM3GZ+RPg1dOWnQac1ouiJEmSNLdZQ1xE7J+Zp9S3XzfbuMz8ZC8KkyRJ0uzmmol7FXBKfXv/Wca0AEOcJElSn80a4jJzr7bbL7g/G4mIbYCTgS2AjcDKzDx22pjdgbOA6+tFZ2Tm0fdnu5IkScOq05P9Pm+W5a/qcDvrgSMz84nAbsBhEbHjDOMuzMyd6x8DnCRJ0iw6PcXI6RHxSeCozPxdRGwOfAJ4KvD5+Z6cmTcDN9e374iIa4CtgKsXVbUkSdIDXKenGHkKsDPw/fpSW1cAv6IKcQsSEdvVz7t4hoefFRE/iIgvR8STFrpuSZKkB4pOTzGyOiJeThW8VgInZeZfLHRjEfEQ4HTgTZk5/UTBlwGPzsx1EbEXcCawwwzrWAGsqOtiYmJioWUMlbGxsXu9BqOjowOsZvHGx8fvs6yMlBmXLzWL+QxOf98GYXxNb17bkTLSiPdtoe5vX4N+v+eyFD6PvWJvzTOsffVCabVa8w6KiJ2pTuz7Y+BE4Bjg+8ChmfmrTjYUEcuALwJfycyPdDD+BmCXzFw7x7DW6tWrO9n80JqYmGDt2t+/RKce/a8DrGbx7t7yj++zbHx8nMnJyQFUszAHvGHXBT9n+vs2CCt/fl5P1tuU922h7m9fK7Z9aRer6a6l8HnsFXtrnmHtC2D58uUApVvr63R36teBj2TmyzPzi1S7V39LtVt1XhFRgJOAa2YLcBGxRT2OiNi1ru3WDuuTJEl6QOn0wIZnZOZPp+5k5m+AgyPiZR0+/zlU55q7IiIur5f9DbBtvb4TgFcCh0bEeuBOYL/MnH+aUJIk6QGo0+/E/XSW5Wd3+PxvMc/0YWZ+HPh4J+uTJEl6oOsoxEXEw4D3AM8HJmgLZJm5bU8qkyRJ0qw6/U7cPwNPA44GHgG8Efg58NEe1SVJkqQ5dBriXgr878w8C9hQ//fPmP2aqpIkSeqhTkPcCHB7fXtdfcWGm4H7nhdCkiRJPdfp0ak/oPo+3NeBC4HjgHXAf/WoLkmSJM2h05m4NwA31Lf/iuoUIJsDB3S/JEmSJM1nwacYycxbgNf3rCJJkiTNq9OZuHtEREdXaZAkSVLvLDjEAY/uehWSJElakDlDXEQ8aYbFXbtwqyRJkhZnvpm470TEOyNitG3Znr0sSJIkSfObL8Q9A3gRcGlEPBXuuQ6qJEmSBmjOo1Mz87+A3SPiL4CvRMTJwNXTxnyyh/VJkiRpBp2e7PdsYF/glcD1bctbgCFOkiSpz+YNcRHxeuAfgE8De2fmZK+LkiRJ0tzmDHER8TXgUcCfZOb3+lOSJEmS5jPfgQ0XAU83wEmSJC0t8x3YcFS/CpEkSVLnFnPFBkmSJA2YIU6SJKmBDHGSJEkN1Ol54oiIzYDHAw9pX56Z3+h2UZIkSZpbRyEuIg4EjgPWAb9te6gFPLb7ZUmSJGkunc7EvQ94ZWZ+uZfFSJIkqTOdfiduDDivl4VIkiSpc52GuA8CR0WEB0JIkiQtAZ3uTn0zsAXwtoi4tf2BzNy261VJkiRpTp2GuNf0tApJkiQtSEchLjO/2etCJEmS1LlOTzGyDDgK2B9YDqwGTgHel5l39648SZIkzaTT3an/COwKHAL8DHg08E7gYVTfl5tTRGwDnEz1vbqNwMrMPHbamAIcC+xFdS66AzPzsg7rkyRJekDp9GjTfYGXZeZ5mXltZp4H/CkQHT5/PXBkZj4R2A04LCJ2nDZmT2CH+mcFcHyH65YkSXrA6TTElQUuv5fMvHlqVi0z7wCuAbaaNmwf4OTMbGXmRcDmEbFlh/VJkiQ9oHS6O/ULwP+NiL8Dfk61O/UoIBe6wYjYDngqcPG0h7YCbmy7v6pedvO056+gmqkjM5mYmFhoCR0ZPWdlT9bbbSMjIzxq48Z77o+Ojg6wmsXbdM3191lWSmHTVmsA1SzMxMReC37O2NhYzz67nRpfM96T9Y6UEcbHe7PuQbq/fZ285oIuVtNdI7eMsLG1ccbH3rLjK/pcTXcthd+1XhnW3oa1r17oNMS9jSq0HUd1YMNNwKnAexeysYh4CHA68KbM/PW0h2ea1bvPX/DMXAlMJazW2rVrF1JCxzabnOzJerttfHycybZaN2wYYDFdNjo6yoYGNLSYz+DExMSintdNkz36jE//TA6LYe0L5u5t0J/T+2sp/K71yrD2Nqx9ASxfvryr6+v0FCN3A++qfxalPsL1dOBzmXnGDENWAdu03d+a6ihYSZIkTdPpTNz9Uh95ehJwTWZ+ZJZhZwOHR8SpwDOB2zPz5lnGSpIkPaD1JcQBz6E6x9wVEXF5vexvgG0BMvME4Byq04tcR3WKkYP6VJskSVLj9CXEZea3mOdI1sxsAYf1ox5JkqSm6/QUI5IkSVpCZp2Ji4jXdbKCzPxk98qRJElSJ+banbp/B89vAYY4SZKkPps1xGXmC/pZiCRJkjrX8YENEfGHVEePbpGZ/xQRy4GRzFzVs+okSZI0o44ObIiI5wPXAn/O70/4uwNepF6SJGkgOj069RjgzzJzD2B9vexiYNdeFCVJkqS5dRritsvMr9e3p65nejf9O1mwJEmS2nQa4q6OiP85bdmLgSu6XI8kSZI60OlM2pHAFyPiS8CmEfEJ4H8B+/SsMkmSJM2qo5m4zLwIeApwFdV54a4Hds3M7/ewNkmSJM2i48tuZeZNwD8B7wE+6KlFJEmSBqej3akRsTnwf4B9gWXA7yLiC8ARmXlb78qTJEnSTDqdifsUsCnwVOCh9X83wUtuSZIkDUSnBza8ANgyM++s718TEQcCq3tSlSRJkubU6UzctcB205ZtWy+XJElSn806ExcRr2u7+3XgvIg4BbgR2AZ4DXBKb8uTJEnSTObanbr/tPvXAc+qfwB+0nZbkiRJfTRriMvMF/SzEEmSJHVuwdc+jYgClKn7mbmxqxVJkiRpXp2eJ24r4OPA84DNpz082uWaJEmSNI9Oj049AbgbeBGwDngacDZwSI/qkiRJ0hw6DXHPBl6XmZcDrcz8AXAwcGSvCpMkSdLsOg1xG4D19e1fRcQjgd8AW/WkKkmSJM2p0xB3MbBXffsrwL8BZwCX9KIoSZIkza3To1P35/eB701Uu1EfCny0BzVJkiRpHh2FuMz8VdvtO4H3RsQo8G7gXb0pTZIkSbPpdHfqTMaAv+1WIZIkSerc/Qlx0HbSX0mSJPXP/Q1xra5UIUmSpAWZ8ztxEfHCOR5+UKcbiYhPAnsDazJzpxke3x04C7i+XnRGZh7d6folSZIeaOY7sOGkeR7/eYfb+TTVZbtOnmPMhZm5d4frkyRJekCbM8Rl5mO6sZHMvCAituvGuiRJktT5eeL64VkR8QNgNfDWzLxqpkERsQJYAZCZTExM9KSY0fHxnqy320ZGRhhvq3V09HcDrKa7SimMjo4Ouox5LeYzODY21rPPbqfG1/TmMz5S7v2ZHBbD2hfM3dugP6f311L4XeuVYe1tWPvqhaUS4i4DHp2Z6yJiL+BMYIeZBmbmSmBlfbe1du3anhS02eRkT9bbbePj40y21bphwwCL6bLR0VE2NKChxXwGJyYmFvW8bprs0Wd8+mdyWAxrXzB3b4P+nN5fS+F3rVeGtbdh7Qtg+fLlXV3f/T06tSsy89eZua6+fQ6wLCKM4ZIkSbNYEiEuIraIiFLf3pWqrlsHW5UkSdLS1ZfdqRHxeWB3YCIiVlFdrmsZQGaeALwSODQi1gN3AvtlpuegkyRJmkVfQlxmvmqexz9OdQoSSZIkdWBJ7E6VJEnSwhjiJEmSGsgQJ0mS1ECGOEmSpAYyxEmSJDWQIU6SJKmBDHGSJEkNZIiTJElqIEOcJElSAxniJEmSGsgQJ0mS1ECGOEmSpAYyxEmSJDWQIU6SJKmBDHGSJEkNZIiTJElqIEOcJElSAxniJEmSGsgQJ0mS1ECGOEmSpAYyxEmSJDWQIU6SJKmBDHGSJEkNZIiTJElqIEOcJElSAxniJEmSGsgQJ0mS1ECGOEmSpAYyxEmSJDWQIU6SJKmBxvqxkYj4JLA3sCYzd5rh8QIcC+wF/BY4MDMv60dtkiRJTdSvmbhPA3vM8fiewA71zwrg+D7UJEmS1Fh9CXGZeQFw2xxD9gFOzsxWZl4EbB4RW/ajNkmSpCbqy+7UDmwF3Nh2f1W97ObpAyNiBdVsHZnJxMRETwo6/sLRnqy320pZT6v1+1pHm1F2R0opjDagobefufCJ41IKrVarB9UswEMe3pv1FqCHre34/y3v3crnMFJGGB8fH8i2e22u3r7wvn/rczXdcehHDwNgbGysZ38neuEjV5/R8diRW0bY2NrYw2o695YdX9G1dTXtPRukpRLiygzLZvwzkJkrgZVTY9auXduTgjZs2NCT9Xbb6OhoY2pdqKb0ttgwNugQt3HD+p6sd3R0jA09WjfA5ORkz9Y9l/Hx8YFtu9fm6u1BDfgdnMnU34aJiQl69XeiFxbyGVtKn8luvsZNe88WYvny7v5P6FI5OnUVsE3b/a2B1QOqRZIkaclbKjNxZwOHR8SpwDOB2zPzPrtSJUmSVOnXKUY+D+wOTETEKuDdwDKAzDwBOIfq9CLXUZ1i5KB+1CVJktRUfQlxmfmqeR5vAYf1oxZJkqRhsFS+EydJkqQFMMRJkiQ1kCFOkiSpgQxxkiRJDWSIkyRJaiBDnCRJUgMZ4iRJkhrIECdJktRAhjhJkqQGMsRJkiQ1kCFOkiSpgQxxkiRJDWSIkyRJaiBDnCRJUgMZ4iRJkhrIECdJktRAhjhJkqQGMsRJkiQ1kCFOkiSpgQxxkiRJDWSIkyRJaiBDnCRJUgMZ4iRJkhrIECdJktRAhjhJkqQGMsRJkiQ1kCFOkiSpgQxxkiRJDWSIkyRJaiBDnCRJUgON9WtDEbEHcCwwCpyYmR+Y9vjuwFnA9fWiMzLz6H7VJ0mS1CR9CXERMQocB7wEWAV8PyLOzsyrpw29MDP37kdNkiRJTdav3am7Atdl5k8z827gVGCfPm1bkiRp6PRrd+pWwI1t91cBz5xh3LMi4gfAauCtmXnV9AERsQJYAZCZTExM9KBcGB0d7cl6u62U0phaF6opvZVS+vKcbhsd7dGvf+nhuoHx8fGerXsuI2VkYNvutbl6a8Lv4Eym/jaMjY317O9EL4yv6fwztpQ+k918jZv2ng1Sv0LcTH+xWtPuXwY8OjPXRcRewJnADtOflJkrgZVT61i7dm0367zHhg0berLebhsdHW1MrQvVlN5arekf5d4+r1s2bljfk/WOjo6xoUfrBpicnOzZuucyPj4+sG332ly9PagBv4MzmfrbMDExQa/+TvTCQj5jS+kz2c3XuGnv2UIsX768q+vr1+7UVcA2bfe3ppptu0dm/joz19W3zwGWRYRRXJIkaQb9mon7PrBDRDwGuAnYD3h1+4CI2AL4ZWa2ImJXqoB5a5/qkyRJapS+zMRl5nrgcOArwDXVorwqIg6JiEPqYa8Erqy/E/cxYL/MHOz+JkmSpCWqb+eJq3eRnjNt2Qlttz8OfLxf9UiSJDWZV2yQJElqIEOcJElSAxniJEmSGsgQJ0mS1ECGOEmSpAYyxEmSJDWQIU6SJKmBDHGSJEkNZIiTJElqIEOcJElSAxniJEmSGsgQJ0mS1ECGOEmSpAYyxEmSJDWQIU6SJKmBDHGSJEkNZIiTJElqIEOcJElSAxniJEmSGsgQJ0mS1ECGOEmSpAYyxEmSJDWQIU6SJKmBDHGSJEkNZIiTJElqIEOcJElSAxniJEmSGsgQJ0mS1ECGOEmSpAYa69eGImIP4FhgFDgxMz8w7fFSP74X8FvgwMy8rF/1SZIkNUlfZuIiYhQ4DtgT2BF4VUTsOG3YnsAO9c8K4Ph+1CZJktRE/dqduitwXWb+NDPvBk4F9pk2Zh/g5MxsZeZFwOYRsWWf6pMkSWqUfoW4rYAb2+6vqpctdIwkSZLo33fiygzLWosYQ0SsoNrdSmayfPny+1/dDN5ywlt7sl5JapTdBl3A/dervxO98J7lBw66hCWhSe/ZIPVrJm4VsE3b/a2B1YsYQ2auzMxdMnMXquD3gP6JiEsHXYO92dsDobdh7cvemvszrL0Na19tvXVNv2bivg/sEBGPAW4C9gNePW3M2cDhEXEq8Ezg9sy8uU/1SZIkNUpfZuIycz1wOPAV4JpqUV4VEYdExCH1sHOAnwLXAf8C/GU/apMkSWqivp0nLjPPoQpq7ctOaLvdAg7rVz1DZOWgC+ghe2umYe1tWPsCe2uqYe1tWPuCLvdWWq37HDsgSZKkJc7LbkmSJDVQ33ananEi4pPA3sCazNypXvYI4N+A7YAbgMjM/64fewdwMLAB+KvM/MoAyp5XRGwDnAxsAWwEVmbmsUPS2zhwAbAJ1e/YaZn57mHobUp9FZZLgJsyc+9h6S0ibgDuoKp1fWbuMgy9RcTmwInATlSnbnodcC3N7+vxVD1MeSzwLqp/WxrdG0BEvBl4PdV7dgVwEPBghqO3I4A3UB21+S+ZeUxTf9e69Xc6Ip4OfBrYlOrrZ0fUXzWblTNxS9+ngT2mLXs78PXM3AH4en2f+lJm+wFPqp/zz/Uf26VoPXBkZj6R6kxUh9X1D0NvdwEvzMynADsDe0TEbgxHb1OOoDpIacow9faCzNy5Po0RDEdvxwLnZuYTgKdQvXeN7yszr63fq52Bp1Ndd/vfGYLeImIr4K+AXepgMEpV+zD0thNVgNuV6vO4d0TsQHN7+zTd+Tt9PNV5cKcuQTp9nfdhiFviMvMC4LZpi/cBPlPf/gzw8rblp2bmXZl5PdWRvrv2o86FysybM/Oy+vYdVH9UtmI4emtl5rr67rL6p8UQ9AYQEVsDf0I1szNlKHqbRaN7i4iHAc8DTgLIzLsz81c0vK8ZvAj4SWb+jOHpbQzYNCLGqGbgVjMcvT0RuCgzf1ufveKbwJ/S0N668Xe6vszowzLzu/Xs28ltz5mVIa6ZHjV1Dr36v39UL2/kpcsiYjvgqcDFDElvETEaEZcDa4CvZubQ9AYcA7yNajf4lGHprQWcFxGX1leHgeb39ljgFuBTEfGfEXFiRPwBze9ruv2Az9e3G99bZt4EfAj4OXAz1blTz2MIegOuBJ4XEX8YEQ8G9qI62f8w9DZlob1sVd+evnxOhrjhUmZYtqQPP46IhwCnA2/KzF/PMbRRvWXmhnoXz9ZU/5e10xzDG9NbREx976PTs443prfaczLzacCeVLv4nzfH2Kb0NgY8DTg+M58K/IZ6184smtLXPSLiQcDLgC/MM7QxvUXEw6lmbR4DLAf+ICJeM8dTGtNbZl4DfBD4KnAu8AOqr9jMpjG9dWC2XhbVoyGumX5ZT71S/3dNvbyjS5ctFRGxjCrAfS4zz6gXD0VvU+rdVudTfbdhGHp7DvCy+gCAU4EXRsRnGY7eyMzV9X/XUH23alea39sqYFU9GwxwGlWoa3pf7fYELsvMX9b3h6G3FwPXZ+Ytmfk74Azg2QxHb2TmSZn5tMx8HtWuyB8zJL3VFtrLqvr29OVzMsQ109nAa+vbrwXOalu+X0RsUl/ibAfgewOob14RUai+o3NNZn6k7aFh6O2R9dGARMSmVP8Y/4gh6C0z35GZW2fmdlS7r76Rma9hCHqLiD+IiIdO3QZeSrXbp9G9ZeYvgBvrIzmh+u7Y1TS8r2lexe93pcJw9PZzYLeIeHD97+WLqL47PAy9ERF/VP93W+AVVO/fUPRWW1Av9S7XOyJit/r9PqDtObMyxC1xEfF54LvA4yNiVUQcDHwAeElE/Bh4SX2fzLwKSKp/oM8FDsvMDYOpfF7PAfanmsm5vP7Zi+HobUvgPyLih1TXDf5qZn6R4ehtNsPQ26OAb0XED6j+QHwpM89lOHp7I/C5+jO5M/B+hqMv6u9UvYRqpmpK43urZ05PAy6jOr3ICNXZ/hvfW+30iLga+L9Utf43De2ti3+nD6U6YOw64CfAl+fbtldskCRJaiBn4iRJkhrIECdJktRAhjhJkqQGMsRJkiQ1kCFOkiSpgcYGXYAkzSQizgc+m5knzje2m89diupzaV0NbLaUTq0gabAMcZJ6qr66w+sz82uDrqWbImKU6txQZ2bm+9uWXUx1gesPdWtbmflz4CHdWp+k4eDuVElahHpG7HXA2yPiCfXit1Jd7/CjAytM0gOGM3GSBqK+wPcpwDOp/i36NnBIZq5qG7Z9RHwPeDzVNWgPyszb6ufvBnwE2BH4GXBEZp7fwXY3obr4dtSLEvjrzLwrInYHPksVwv4a2AD8TWZ+aqZ1ZeaVEfER4KSIeD3wN8BzZ9vlGREHAW+jui7iLcAHM/MT9WN/Dfxp/fz1EXEocDjwdGAL4HpgWf3YgcC7gEcCa4GjMvNz8/Uuabg4EydpUEaATwGPBrYF7gQ+Pm3MAVSzXcuB9cDHACJiK+BLwHuBR1DNgJ0eEY/sYLt/C+xGdfmpp1Bd5P6otse3ADYDtgIOBo6rA+ds3g88DLgQOCYzr5hj7Bpg73r8QcBHI+Jp9WP/BNwNHBURO9TrfU1mTravoL6u68eAPTPzoVQXRb987pYlDSNn4iQNRGbeCpw+dT8i3gf8x7Rhp2TmlfXj7wQuj4jXAq8BzsnMc+pxX42IS4C9gM/Ms+k/B96YmWvq9f4d8AngnfXjvwOOzsz1wDkRsY5qJvCiWfq4OyIupgp8c86GZeaX2u5+MyLOA/4HcFlmboyIA6iulflnwD9m5n/OsqqNwE4R8fP6wtk3z9OzpCFkiJM0EPWFyz8K7AFMzXQ9NCJG23ZH3tj2lJ8By4AJqtm7fSPif7U9voz7hsCZLK/X1b7e5W33b60D3JTfMsdBBRHxP4CXAycDxwJ71stPoAqbAO/PzPdHxJ7Au4HHUc1EPpjq4uYAZOYNEfEfVGH0uJm2l5m/iYg/o5p9PCkivg0cmZk/mqdvSUPGECdpUI6kmuF6Zmb+IiJ2Bv4TKG1jtmm7vS3VLNlaqnB3Sma+YRHbXU0VAq9qW+/qRayHiBgHTqIKVAlcGRGvyczPZuYhwCFtYzehmnk8ADgrM38XEWfS1m9E7AU8C/g61e7Vv5hpu5n5FeArEbEp1S7lf6Ga0ZP0AGKIk9QPy+rAM2U98FCq78H9KiIeQTVDNd1rIuJk4AbgaOC0zNwQEZ8Fvh8R/xP4GtUs3G7AddMOjJjJ56m+d/Z9qiNJ30V1MMNiHA38LDM/DRARK4DPR8RXMvOWaWMfBGxCdUDD+npW7qXA1O7iCapAeDDVaUquiIiz2nYZU497FNXBIF+nev3WUR2AIekBxgMbJPXDOVSBY+rnPcAxwKZUM2sXAefO8LxTgE8DvwDGgb8CyMwbgX2ojga9hWpm7v+ns3/T3gtcAvyQalfmZfWyBYmIXahmylZMLavPhfdFqt7uJTPvqOtP4L+BVwNntw1ZSTVDd079fcGDgRMj4g+nrWqEahZzNXAb8HzgLxdav6TmK61Wa9A1SJIkaYGciZMkSWogQ5wkSVIDGeIkSZIayBAnSZLUQIY4SZKkBjLESZIkNZAhTpIkqYEMcZIkSQ1kiJMkSWqg/wd3D2tU0B3VdAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "df.plot(kind ='hist', \n", " figsize=(10, 6),\n", " alpha=0.6,\n", " bins=10, # passing no of bins\n", " xticks=[100,200,300,400,500,600,700,800,900,1000], # passing xticks\n", " color=['coral', 'darkslateblue', 'mediumseagreen']\n", " )\n", "plt.title('Title of the Plot')\n", "plt.ylabel('Label on Y-axis')\n", "plt.xlabel('Label on X-axis')\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To make the histogram stacked, we need to pass `stacked=True`." ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmcAAAGHCAYAAAD1HvUOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAmp0lEQVR4nO3deZhkZXn38e/T00APLqC2ioMgiogLXqAg4vIiYlBAIkbjHTWAIjpxQ6ImLgkY4xZNjIAGiSiKINHcAQUjiOKCuyAaFARRVBQcEUZEQWjGmTnvH+e0tE33dPVQy6nq7+e6+pqqU6fOc99dTfeP52ylqiokSZLUDmODLkCSJEm3MZxJkiS1iOFMkiSpRQxnkiRJLWI4kyRJahHDmSRJUosYziRtlFLKXqWUqpRy3wXWe2Mp5Yo+1fTwUsoFpZSpUsqVi3zvlaWUI3tU2kJj9+17JKn9DGeSbqcJXRv6uhL4OnAfYFXznsc3r203wNL/Ffgd8GDgUXOtUEo5crHB7Y4opWw363v321LK+aWUA+/gdj9XSjmpS2VKahHDmaS53GfG13SI2H3GskdVVbWmqqprqqpaP6Aa57ID8KWqqq6squq6QRczy4HU37s9gMuAj5dS9hhsSZLayHAm6Xaa0HVNVVXXANc3i6+bsfy6mbs1m9myrzTr/bRZft582y+l7FNK+Vop5ZZSyi9KKR8qpdxjQzWVUu5TSvlYKeWG5n3nlVJ2a17brpRSAdsDb2rGf+Mc23g+8GbgfjNmsmaut2kp5dhSyvWllF+VUt5ZSlk2axuHl1J+0Ow6/VEp5R9LKeMbqr1xffO9uwx4EXArtwXfufp9Xinl0lLKraWUq0spb5kep5kxexLwvBl97NVBDZKGQCe/UCRpIVdRB40zqWfYrgLWzLViKWXvZr3XAs8HtqTeHfmJUsoTqjnuKVdKKcAZwGbAAcBvgSOBc0spOzTj3Qf4FnAqcAxw0xzD/zf1Ls+/5rbdnjPXOxx4B/Bo4JHNtr4PfKip443AocDfAhcBDwH+E5gAjpqr33msBf4AbDLXi6WUpwIfbHo8HXhEM07VjHME8ADgl81juC1ESxpyhjNJd1hVVetKKX8yw7aB1d8AvLuqqvdMLyilPA/4GbAzdeiZbW/q0Pewqqoubd5zCHAl8NKqqt4EXFNKWQfcNN/4VVXdUkq5CVg3zzpfqarq7c3jH5VSDgWeDHyolLI58BrgGVVVndOs89PmJIJ302E4K6VMAK8D7gp8bp7VXgecXlXVvzTPf1hK2Qp4eynlzVVV/baUsga4ZYHvtaQhZDiT1G+PAvYopbx8jtd2YO5w9jDg19PBDKCqqltLKec3r3XL7LF/Adx/Rg3LgdObXajTlgETpZR7LnCc22dLKeubbfwGeOWMkDfbw6hn+Wb6EvUM3fbUx6xJGlGGM0n9Nka96/CUOV7b0CzQ7XZ3AmWe5Rtr9q7YituOzZ3+91nAD+d470K7FQ8Fvg38tsOTFWb3VeZZLmnEGM4kdct0sFm2wbXgQurdk4u5rtf3gclSykNn7NbcjHpX53s3os6FapyvhingAVVVnb0R7//FInr+PvAE4LgZy/YEbgF+0jzf2D4ktZxna0rqlp8B64H9Syn3KqVsMc96bwAOLKUcXUrZpZSyfSll31LKiaWU5fO85wvABcB/lVIeV0rZCTiZejff8Yus86fAVqWUx5RSJptjyRZUVdVNwNuAt5VSXl5K2bGU8rBSyrNLKe9YZA0L+RfgmaWU15VSHlRKCeCNwL9XVTUdgn8K7Np8/yZLKXOeXCBp+BjOJHVFVVW/Al5PfTD7L6nPyJxrvS9SH+D/cOrLb3wPOBq4kfoMxrneUwFPB34AnEV9VuZWwD5VVa1eZKlnAP/TbOc66oP8O1JV1ZuBVwIvBL4LfLV5fuUia1honLOBFwDPAy6h/v68F/jnGav9O7C6qeM64HHdrEHS4JQ5zlqXJEnSgDhzJkmS1CJ9OSEgInbkT08LfwDwhsw8ph/jS5IkDYu+79aMiGXU1w56dGb+rK+DS5Iktdwgdms+CfixwUySJOn2BhHOng18dADjSpIktV5fL0IbEZsCT6M+3X6u11cCKwEyc9c+liZJknRHlYVX6WAj/TzmLCIOBF6WmU/uYPVq1apVvS6p1SYnJ1m9+rZLOJ38/gsGWM3GO+RFu99u2ezeRsWo9gX2NqxGtbdR7QvsbVitWLECuhTO+r1b8zm4S1OSJGlefQtnEbE5sA/w8X6NKUmSNGz6dsxZZt4M3KNf40mSJA2jvp4QIEmSNJeqqpiammL9+vWU0pVDt7quqirGxsaYmJjoaY2GM0mSNHBTU1NssskmjI+3O5qsXbuWqakpli9f3rMxvLemJEkauPXr17c+mAGMj4+zfv36no5hOJMkSQPX1l2Zc+l1rYYzSZKkxqc//Wm23nprrrjiioHV0P75Q0mStORs8eX/6ur2frvnczta74wzzmD33XfnzDPP5NWvfnVXa+iUM2eSJEnA73//ey688ELe+c53cuaZZw6sDsOZJEkScM4557DXXnux/fbbs+WWW3LxxRcPpA7DmSRJEvUuzQMPPBCAAw88kDPOOGMgdXjMmSRJWvKuv/56vv71r3P55ZdTSmHdunWUUjjyyCP7fiapM2eSJGnJO+uss3jmM5/JBRdcwPnnn8+FF17ItttuywUXXND3WgxnkiRpyTvzzDPZb7/9/mTZ/vvvzyc+8Ym+1+JuTUmS1DqdXvqiW0477bTbLTvssMP6WsM0Z84kSZJaxHAmSZLUIoYzSZKkFjGcSZIktYjhTJIkqUUMZ5IkSS3ipTQkSZKAbbbZhgc/+MFUVcWyZct4y1vewqMe9ai+12E4kyRJrXPy+7t7Zf5DXrT7gutMTExw7rnnAnDeeefx9re/ndNPP72rdXTC3ZqSJEmz3HjjjWyxxRYDGduZM0mSJGBqaop99tmHW2+9lWuvvZbMHEgdhjNJkiT+dLfmhRdeyBFHHMEXvvAFSil9rcPdmpIkSbPstttuXH/99fz617/u+9iGM0mSpFmuuOIK1q1bx93udre+j+1uTUmSJG475gygqiqOOeYYli1b1vc6DGeSJKl1Orn0RbddddVVfR9zLu7WlCRJahHDmSRJUosYziRJklrEcCZJktQihjNJkqQWMZxJkiS1iOFMkiQJuPbaa3nJS17CYx/7WPbaay8OPvhgfvzjH/e9Dq9zJkmSWueEn3+2q9tbue2TN/h6VVUcdthhPOtZz+L4448H4JJLLmH16tVsv/32Xa1lIYYzSZK05H3ta19jk0024ZBDDvnjsp122mkgtbhbU5IkLXmXX345D3/4wwddBtDHmbOI2BL4ALATUAEvyMxv9Gt8SZKkYdDPmbNjgXMy88HAzsBlfRxbkiRpXg960IO4+OKLB10G0KdwFhF3BfYETgTIzDWZeUM/xpYkSVrI4x//eNasWcOpp576x2UXXXQR3/hG/3fy9Wu35gOA64APRcTOwLeBIzLz9zNXioiVwEqAzGRycrJP5bXT+Pj4n3wPJiYmBljNxpvrc5zd26gY1b7A3obVqPY2qn3B0u3tV7/6FePjt8WSsdLd+aOZ257PSSedxFFHHcVxxx3HxMQE22yzDW9+85tv997NNtusp59RqaqqZxufFhG7Ad8EHpeZ50fEscDvMvOoDbytWrVqVc9ra7PJyUlWr179x+cnv/+CAVaz8Q550e63Wza7t1Exqn2BvQ2rUe1tVPuCpdvbzTffzOabb97nijbOXLWuWLECoHRj+/065uxq4OrMPL95fhrwyD6NLUmSNDT6Es4y8xrgqojYsVn0JODSfowtSZI0TPp5EdrDgVMjYlPgJ8ChfRxbkiRpKPQtnGXmRcBu/RpPkiQNj34cA98tva7VOwRIkqSBGxsbY+3atYMuY0Fr165lbKy38cl7a0qSpIGbmJhgamqKW2+9lVK6ctJj11VVxdjYWM8vbWU4kyRJA1dKYfny5YMuoxXcrSlJktQihjNJkqQWMZxJkiS1iOFMkiSpRQxnkiRJLWI4kyRJahHDmSRJUosYziRJklrEcCZJktQihjNJkqQWMZxJkiS1iOFMkiSpRQxnkiRJLWI4kyRJahHDmSRJUosYziRJklrEcCZJktQihjNJkqQWMZxJkiS1iOFMkiSpRQxnkiRJLWI4kyRJahHDmSRJUosYziRJklrEcCZJktQihjNJkqQWMZxJkiS1iOFMkiSpRQxnkiRJLWI4kyRJahHDmSRJUosYziRJklrEcCZJktQihjNJkqQWGe/XQBFxJXAjsA5Ym5m79WtsSZKkYdG3cNZ4Ymau7vOYkiRJQ8PdmpIkSS3Sz3BWAZ+NiG9HxMo+jitJkjQ0SlVVfRkoIlZk5qqIuBdwLnB4Zn551jorgZUAmbnrmjVr+lJbW42Pj7N27do/Pn/v0V8YYDXdVcYK1fr+/OxtrJe+cu9Fv2f2ZzZK7G04jWpvo9oX2Nuw2nTTTQFKN7bVt3A2U0S8EbgpM9+5gdWqVatW9amidpqcnGT16tsO0Tv5/RcMsJrumpiYYGpqatBlbNAhL9p90e+Z/ZmNEnsbTqPa26j2BfY2rFasWAFdCmd92a0ZEXeKiLtMPwaeDFzSj7ElSZKGSb/O1rw38ImImB7zvzLznD6NLUmSNDT6Es4y8yfAzv0YS5IkaZh5KQ1JkqQWMZxJkiS1iOFMkiSpRQxnkiRJLWI4kyRJahHDmSRJUosYziRJklrEcCZJktQihjNJkqQWMZxJkiS1iOFMkiSpRQxnkiRJLWI4kyRJahHDmSRJUosYziRJklrEcCZJktQihjNJkqQWMZxJkiS1iOFMkiSpRQxnkiRJLWI4kyRJapGNCmcR8YCIuF+3i5EkSVrqOgpnEfHRiHhs8/hQ4PvApRFxWC+LkyRJWmo6nTl7EnBh8/hVwJ8BuwOv60VRkiRJS9V4h+ttmplrImJr4O6Z+TWAiLh370qTJElaejoNZxdFxOuB+wFnATRB7Xe9KkySJGkp6nS35mHAw4HlwJHNsscAp/aiKEmSpKWqo5mzzPwx8NxZy04DTutFUZIkSUvVvOEsIg7OzFOaxy+Yb73M/GAvCpMkSVqKNjRz9hzglObxwfOsUwGGM0mSpC6ZN5xl5v4zHj+xP+VIkiQtbZ1ehHbPeZY/p7vlSJIkLW2dXkrj9Ij4IHBkZv4hIrYE3gc8Avhor4qTJElaajq9lMbOwC7At5pbNl0M3EAdziRJktQlHYWzzFwFPL1Z/wTg05n5N5n5+x7WJkmStOR0eszZLtT31vwJcCCwd3Mz9C17V5okSdLS0+luzc8D78rMp2fmp6h3c95MvXtTkiRJXdLpCQGPysyfTD9pdmceFhFP601ZkiRJS1Ont2/6yTzLP7mYwSJiGfXu0V9k5gGLea8kSdJS0FE4i4i7Am8EngBMAmX6tczcdhHjHQFcBtx1Ee+RJElaMjo95uy9wCOBNwF3Bw4Hfg4c3elAEXFf4KnABxZZoyRJ0pLR6TFnTwYekpm/joh1mXlmRFwI/C+dB7RjgNcAd5lvhYhYCawEyEwmJyc73PRoGh8f/5Pvwd/vfPUAq9l477n8gbdbVsYKExMTA6imcxvz8zf7MxuEd1368Z5sd+y6MdZX63uybYBXPfQZPdv2QtrwufXKqPY2qn2BvanzcDYG/LZ5fFNzCY1fArf/qzuHiDgAuDYzvx0Re823XmaeQH0dNYBq9erVHZY3miYnJ5n5PdhiamqA1Wy8qTnqnpiYmHN5m2zMz9/sz2wQevV97fVnNsjvWxs+t14Z1d5GtS+wt2G1YsWKrm2r092a36U+3gzgK8BxwPHADzt8/+OAp0XElcDHqK+T9pFF1ClJkrQkdDpz9iJuOwngFcC/AFsCh3Ty5sx8PfB6gGbm7O8y86DFFCpJkrQULPpSGpl5HfDCnlUkSZK0hHW6W/OPIuIO3RUgM8/zGmeSJElzW3Q4A+7X9SokSZIELBDOIuJhcywucyyTJElSFyw0c/b1iDique3StP16WZAkSdJStlA4exTwJODbEfEIgMz8as+rkiRJWqI2eLZmZv4Q2Csi/gb4TEScDFw6a50P9rA+SZKkJaXT65x9EngW8JfAT2csrwDDmSRJUpcsGM4i4oXUF509CTggM9t9zx1JkqQhtsFwFhGfA+4NPDUzL+hPSZIkSUvXQicEfBPY1WAmSZLUHwudEHBkvwqRJEnSxt0hQJIkST1iOJMkSWoRw5kkSVKLdHqdMyJiC2BH4M4zl2fmF7pdlCRJ0lLVUTiLiOcDxwE3ATfPeKkCHtD9siRJkpamTmfO3gr8ZWZ+upfFSJIkLXWdHnM2Dny2l4VIkiSp83D2DuDIiPAEAkmSpB7qdLfmK4GtgNdExK9nvpCZ23a9KkmSpCWq03B2UE+rkCRJEtBhOMvML/W6EEmSJHV+KY1NgCOBg4EVwCrgFOCtmbmmd+VJkiQtLZ3u1vxXYHfgxcDPgPsBRwF3pT4eTZIkSV3QaTh7FrBzZk6fDHB5RHwH+C6GM0mSpK7p9NIYZZHLJUmStBE6nTn7H+B/I+KfgZ9T79Y8EsheFSZJkrQUdRrOXkMdxo6jPiHgF8DHgLf0qC5JkqQlqdNLaawB3tB8SZIkqUe8HZMkSVKLGM4kSZJaxHAmSZLUIoYzSZKkFpn3hICIeEEnG8jMD3avHEmSpKVtQ2drHtzB+yvAcCZJktQl84azzHxiPwuRJElS5xehJSLuAewPbJWZ/xYRK4CxzLy6Z9VJkiQtMR2dEBARTwAuB/6a2y5EuwNwfI/qkiRJWpI6PVvzGOCvMnNfYG2z7Hxg914UJUmStFR1ultzu8z8fPO4av5d0+n7I2IC+DKwWfOe0zLznxZTqCRJ0lLQ6czZpRHxlFnL/gy4uMP33wrsnZk7A7sA+0bEHh2+V5IkacnodObs1cCnIuIsYHlEvA/4c+DATt6cmRVwU/N0k+armv8dkiRJS1Opqs4yUkRsTX1CwP2Aq4CPLOZMzYhYBnwbeCBwXGa+do51VgIrATJz1zVr1nS6+UV579Ff6Ml2u62MFar1t30+h+94xQCr2XjvufyBt1s2u7c2mnrKDYt+z1gZY321vvvFtIC9ze1VD31Gl6vprvHxcdauXbvwikNmVPsCextWm266KUDpxrY6DmcAEVGASWB1Mxu2aBGxJfAJ4PDMvGQDq1arVq3amCEWdPL7L+jJdrttYmKCqampPz4fpXA2u7c22phwNgx9bSx7m9vKbZ/c5Wq6a3JyktWrVw+6jK4b1b7A3obVihUroEvhrNNLaWwZEacAtwDXALdExCkRcffFDpiZNwDnAfsu9r2SJEmjrtMTAj4ELAceAdyl+XczOrx1U0Tcs5kxIyKWU59M8IPFFitJkjTqOj0h4InAfTLzlub5ZRHxfKDT/Y73AT7cHHc2BmRmfmpRlUqSJC0BnYazy4HtgMtmLNu2Wb6gzPwe9WybJEmSNmDecBYRL5jx9PPAZ5vjzq4CtgEOAk7pbXmSJElLy4Zmzg6e9fwK4DHNF8CPZzyWJElSF8wbzjLzif0sRJIkSZ0fc/ZHzbXO/ngdj8wczatSSpIkDUCnNy7fGvgPYE9gy1kvL+tyTZIkSUtWp9c5+09gDfAk6ntkPhL4JPDiHtUlSZK0JHUazh4LvCAzLwKqzPwucBj1DdElSZLUJZ2Gs3XA9J1Kb4iIewK/B7buSVWSJElLVKfh7Hxg/+bxZ4D/Bj4OXNiLoiRJkpaqTs/WPJjbgtzfUu/OvAtwdA9qkiRJWrI6CmeZecOMx7cAb2nuk/lPwBt6U5okSdLS0+luzbmMA//YrUIkSZJ0x8IZzLgYrSRJku64OxrOqq5UIUmSJGCBY84iYu8NvLxpl2uRJEla8hY6IeDEBV7/ebcKkSRJ0gLhLDPv369CJEmSdMePOZMkSVIXGc4kSZJaxHAmSZLUIoYzSZKkFjGcSZIktYjhTJIkqUUMZ5IkSS1iOJMkSWoRw5kkSVKLGM4kSZJaxHAmSZLUIoYzSZKkFjGcSZIktYjhTJIkqUUMZ5IkSS1iOJMkSWoRw5kkSVKLGM4kSZJaxHAmSZLUIoYzSZKkFhnvxyARsQ1wMrAVsB44ITOP7cfYkiRJw6RfM2drgVdn5kOAPYCXRcRD+zS2JEnS0OhLOMvMX2bmd5rHNwKXAVv3Y2xJkqRh0vdjziJiO+ARwPn9HluSJKntSlVVfRssIu4MfAl4a2Z+fI7XVwIrATJz1zVr1vSkjmVnn9CT7Xbb2NgY69evH3QZPTEMvb3n8gcu+j1lrFCt799/U3OZesoNPdnuWBljfdXuz2xjLcXeJj6zZf+L6YKXvnJvAMbHx1m7du2Aq+kNextOm266KUDpxrb6ckIAQERsApwOnDpXMAPIzBOA6eRUrV69uie1bDE11ZPtdtvExARTQ1LrYg1DbxtTXxv66tX4beitV5Zkb0Pa7/TfhcnJSXr1N2LQ7G04rVixomvb6stuzYgowInAZZn5rn6MKUmSNIz6NXP2OOBg4OKIuKhZ9g+ZeXafxpckSRoKfQlnmflVurQfVpIkaZR5hwBJkqQWMZxJkiS1iOFMkiSpRQxnkiRJLWI4kyRJahHDmSRJUosYziRJklrEcCZJktQihjNJkqQWMZxJkiS1iOFMkiSpRQxnkiRJLWI4kyRJahHDmSRJUosYziRJklrEcCZJktQihjNJkqQWMZxJkiS1iOFMkiSpRQxnkiRJLWI4kyRJahHDmSRJUosYziRJklrEcCZJktQihjNJkqQWMZxJkiS1iOFMkiSpRQxnkiRJLWI4kyRJahHDmSRJUosYziRJklrEcCZJktQihjNJkqQWMZxJkiS1iOFMkiSpRQxnkiRJLWI4kyRJahHDmSRJUouM92OQiPggcABwbWbu1I8xJUmShlG/Zs5OAvbt01iSJElDqy/hLDO/DFzfj7EkSZKGWV92a3YqIlYCKwEyk8nJyZ6Ms2xioifb7baxsTEmhqTWxRqG3v5+56sX/Z6xsTHWr1/fg2o6954vPbAn2y1jhYn1VU+2DTD1lBt6tu2FjJX2/zxurPl625if7zZYN7k/AOPj4z37G9Er77r04x2tN3bdGOurwf4emelVD31G17Y1jJ/bILQqnGXmCcAJzdNq9erVPRlni6mpnmy32yYmJpgakloXa1R7a0NfvRq/170N8vvWhs+tV+brbVj7/W3zd2FycpJe/Y3olU6/5237eezm93kYP7dOrVixomvb8mxNSZKkFjGcSZIktUhfwllEfBT4BrBjRFwdEYf1Y1xJkqRh05djzjLzOf0YR5Ikadi5W1OSJKlFDGeSJEktYjiTJElqEcOZJElSixjOJEmSWsRwJkmS1CKGM0mSpBYxnEmSJLWI4UySJKlFDGeSJEktYjiTJElqEcOZJElSixjOJEmSWsRwJkmS1CKGM0mSpBYxnEmSJLWI4UySJKlFDGeSJEktYjiTJElqEcOZJElSixjOJEmSWsRwJkmS1CKGM0mSpBYxnEmSJLWI4UySJKlFDGeSJEktYjiTJElqEcOZJElSixjOJEmSWsRwJkmS1CKGM0mSpBYxnEmSJLWI4UySJKlFDGeSJEktYjiTJElqEcOZJElSixjOJEmSWmS8XwNFxL7AscAy4AOZ+fZ+jS1JkjQs+jJzFhHLgOOA/YCHAs+JiIf2Y2xJkqRh0q/dmrsDV2TmTzJzDfAx4MA+jS1JkjQ0+hXOtgaumvH86maZJEmSZujXMWdljmXV7AURsRJYCZCZrFixojfVPPvverPdHrjToAvooVHtbdB9vW7A42tI7DHoAjbOzP++evY3okfeuOL5gy6hFYbtcxuEfs2cXQ1sM+P5fYFVs1fKzBMyc7fM3I060C3pr4j49qBrsDf7srfh/hrV3ka1L3sb3q+mt67o18zZt4AdIuL+wC+AZwPP7dPYkiRJQ6MvM2eZuRZ4OfAZ4LJ6UX6/H2NLkiQNk75d5ywzzwbO7td4I+KEQRfQQ6Pa26j2BfY2rEa1t1HtC+xtWHWtt1JVtzsuX5IkSQPi7ZskSZJapG+7NfWnIuKDwAHAtZm5U7Ps7sB/A9sBVwKRmb9pXns9cBiwDnhFZn5mAGV3JCK2AU4GtgLWAydk5rHD3l9ETABfBjaj/m/ntMz8p2Hva6bmbh4XAr/IzANGpbeIuBK4kbrWtZm52wj1tiXwAWAn6ksUvQC4nCHvLSJ2pO5h2gOAN1D/bhn23l4JvJD687oYOBTYnCHvCyAijgBeRH0G4/sz85hh/W+tW3+nI2JX4CRgOfXhXUdk5gZ3WzpzNjgnAfvOWvY64POZuQPw+eY5za2ung08rHnPe5s/om21Fnh1Zj6E+mpKL2t6GPb+bgX2zsydgV2AfSNiD4a/r5mOoD5pZ9oo9fbEzNyluVQPjE5vxwLnZOaDgZ2pP7+h7y0zL28+r12AXYGbgU8w5L1FxNbAK4Ddmj/4y6jrHuq+ACJiJ+pgtjv1z+IBEbEDw9vbSXTn7/Tx1Ndw3aH5mr3N2zGcDUhmfhm4ftbiA4EPN48/DDx9xvKPZeatmflT4ArqH/5WysxfZuZ3msc3Uv+x2Joh7y8zq8y8qXm6SfNVMeR9TYuI+wJPpZ6FmTYSvc1j6HuLiLsCewInAmTmmsy8gRHobZYnAT/OzJ8xGr2NA8sjYpx6xmwVo9HXQ4BvZubNzVUavgT8BUPaWzf+TkfEfYC7ZuY3mtmyk2e8Z16Gs3a5d2b+EuqAA9yrWT60t7+KiO2ARwDnMwL9RcSyiLgIuBY4NzNHoq/GMcBrqHdFTxuV3irgsxHx7eZOJDAavT0AuA74UET8X0R8ICLuxGj0NtOzgY82j4e6t8z8BfBO4OfAL4HfZuZnGfK+GpcAe0bEPSJic2B/6gvQj0Jv0xbby9bN49nLN8hwNhzKHMtaf5ptRNwZOB3428z83QZWHZr+MnNds5vlvtT/V7TTBlYfmr4iYvq4ik6vcD00vTUel5mPBPaj3s2+5wbWHabexoFHAsdn5iOA37PhO3gNU28ARMSmwNOA/1lg1aHoLSLuRj3Lcn9gBXCniDhoA28Zir4AMvMy4B3AucA5wHepD3OZz9D01oH5etmoHg1n7fKrZgqU5t9rm+Ud3f6qTSJiE+pgdmpmfrxZPDL9NbuOzqM+dmAU+noc8LTmwPmPAXtHxEcYjd7IzFXNv9dSH7e0O6PR29XA1c0MLsBp1GFtFHqbth/wncz8VfN82Hv7M+CnmXldZv4B+DjwWIa/LwAy88TMfGRm7km9S/BHjEhvjcX2cnXzePbyDTKctcsngec1j58HnDlj+bMjYrPmFlg7ABcMoL6OREShPgbmssx814yXhrq/iLhnc2YcEbGc+pfsDxjyvgAy8/WZed/M3I56F9IXMvMgRqC3iLhTRNxl+jHwZOrdL0PfW2ZeA1zVnNkI9bFZlzICvc3wHG7bpQnD39vPgT0iYvPmd+WTqI/LHfa+AIiIezX/bgs8g/qzG4neGovqpdn1eWNE7NF83ofMeM+8DGcDEhEfBb4B7BgRV0fEYcDbgX0i4kfAPs1zsr7VVVL/0j0HeFlmrhtM5R15HHAw9ezLRc3X/gx/f/cBvhgR36O+X+y5mfkphr+vDRmF3u4NfDUivkv9i/+szDyH0egN4HDg1ObnchfgbYxIb81xS/tQzy5NG+remlnO04DvUF9GY4z6yvJD3dcMp0fEpcD/Utf6G4a0ty7+nX4J9YlWVwA/Bj690NjeIUCSJKlFnDmTJElqEcOZJElSixjOJEmSWsRwJkmS1CKGM0mSpBYZH3QBkpaeiDgP+EhmfmChdbv53jZqrgd1KbBFmy4jIGlwDGeSNlpzR4EXZubnBl1LN0XEMurrG52RmW+bsex86psbv7NbY2Xmz4E7d2t7koafuzUlaZZmBusFwOsi4sHN4r+jvife0QMrTNKS4MyZpK5rbu58CvBo6t8zXwNenJlXz1ht+4i4ANiR+j6lh2bm9c379wDeBTwU+BlwRGae18G4m1HfeDmaRQm8NjNvjYi9gI9Qh6vXAuuAf8jMD821rcy8JCLeBZwYES8E/gF4/Hy7HiPiUOA11PfOuw54R2a+r3nttcBfNO9fGxEvAV4O7ApsBfwU2KR57fnAG4B7AquBIzPz1IV6lzQ6nDmT1AtjwIeA+wHbArcA/zFrnUOoZ6dWAGuBdwNExNbAWcBbgLtTz1idHhH37GDcfwT2oL6N0c7UNzg/csbrWwFbAFsDhwHHNUFyPm8D7gp8BTgmMy/ewLrXAgc06x8KHB0Rj2xe+zdgDXBkROzQbPegzJyauYHm3p/vBvbLzLtQ3xD7og23LGnUOHMmqesy89fA6dPPI+KtwBdnrXZKZl7SvH4UcFFEPA84CDg7M89u1js3Ii4E9gc+vMDQfw0cnpnXNtv9Z+B9wFHN638A3pSZa4GzI+Im6pm7b87Tx5qIOJ86yG1w9iozz5rx9EsR8Vng/wHfycz1EXEI9f0U/wr418z8v3k2tR7YKSJ+3tw0+ZcL9CxpxBjOJHVdc8Pqo4F9gemZqbtExLIZuwWvmvGWnwGbAJPUs23Piog/n/H6Jtw+3M1lRbOtmdtdMeP5r5tgNu1mNnAwfkT8P+DpwMnAscB+zfL/pA6RAG/LzLdFxH7APwEPop453Jz6xtYAZOaVEfFF6pB53FzjZebvI+KvqGcLT4yIrwGvzswfLNC3pBFiOJPUC6+mnpF6dGZeExG7AP8HlBnrbDPj8bbUs1qrqUPbKZn5oo0YdxV1uPv+jO2u2ojtEBETwInUQSmBSyLioMz8SGa+GHjxjHU3o54pPAQ4MzP/EBFnMKPfiNgfeAzweerdnH8z17iZ+RngMxGxnHrX7vupZ+AkLRGGM0l31CZNkJm2FrgL9XFmN0TE3alnlGY7KCJOBq4E3gSclpnrIuIjwLci4inA56hnzfYArph1QsFcPkp9XNe3qM+sfAP1SQAb403AzzLzJICIWAl8NCI+k5nXzVp3U2Az6hMB1jazaE8GpnfbTlIHvcOoL8dxcUScOWPXLc1696Y+ieLz1N+/m6hPXJC0hHhCgKQ76mzqIDH99UbgGGA59UzYN4Fz5njfKcBJwDXABPAKgMy8CjiQ+uzI66hn0v6ezn5fvQW4EPge9S7F7zTLFiUidqOe2Vo5vay5ltunqHv7E5l5Y1N/Ar8Bngt8csYqJ1DPqJ3dHI93GPCBiLjHrE2NUc86rgKuB54AvHSx9UsabqWqqkHXIEmSpIYzZ5IkSS1iOJMkSWoRw5kkSVKLGM4kSZJaxHAmSZLUIoYzSZKkFjGcSZIktYjhTJIkqUUMZ5IkSS3y/wE2JId0bmmiPAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "df.plot(kind ='hist', \n", " figsize=(10, 6),\n", " alpha=0.6,\n", " xticks=[100,200,300,400,500,600,700,800,900,1000],\n", " stacked=True, # stacking the columns\n", " color=['coral', 'darkslateblue', 'mediumseagreen']\n", " )\n", "plt.title('Title of the Plot')\n", "plt.ylabel('Label on Y-axis')\n", "plt.xlabel('Label on X-axis')\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": { "button": false, "new_sheet": false, "run_control": { "read_only": false } }, "source": [ "## Thanks for reading :)\n", "Created by [Tarun Kamboj](https://www.linkedin.com/in/kambojtarun/)." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.6" }, "widgets": { "state": {}, "version": "1.1.2" } }, "nbformat": 4, "nbformat_minor": 2 }