{ "cells": [ { "cell_type": "markdown", "metadata": { "button": false, "new_sheet": false, "run_control": { "read_only": false } }, "source": [ "# Logistic Regression\n", "---" ] }, { "cell_type": "markdown", "metadata": { "button": false, "new_sheet": false, "run_control": { "read_only": false } }, "source": [ "Lets first import required libraries:" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "button": false, "new_sheet": false, "run_control": { "read_only": false } }, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "from sklearn import preprocessing\n", "from sklearn.model_selection import train_test_split\n", "from sklearn.linear_model import LogisticRegression\n", "from sklearn.metrics import classification_report, confusion_matrix, jaccard_score, log_loss\n", "import itertools\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Customer churn with Logistic Regression\n", "\n", "A telecommunications company is concerned about the number of customers leaving their land-line business for cable competitors. They need to understand who is leaving. Imagine that you are an analyst at this company and you have to find out who is leaving and why." ] }, { "cell_type": "markdown", "metadata": { "button": false, "new_sheet": false, "run_control": { "read_only": false } }, "source": [ "
\n", " | tenure | \n", "age | \n", "address | \n", "income | \n", "ed | \n", "employ | \n", "equip | \n", "callcard | \n", "wireless | \n", "longmon | \n", "... | \n", "pager | \n", "internet | \n", "callwait | \n", "confer | \n", "ebill | \n", "loglong | \n", "logtoll | \n", "lninc | \n", "custcat | \n", "churn | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", "11.0 | \n", "33.0 | \n", "7.0 | \n", "136.0 | \n", "5.0 | \n", "5.0 | \n", "0.0 | \n", "1.0 | \n", "1.0 | \n", "4.40 | \n", "... | \n", "1.0 | \n", "0.0 | \n", "1.0 | \n", "1.0 | \n", "0.0 | \n", "1.482 | \n", "3.033 | \n", "4.913 | \n", "4.0 | \n", "1.0 | \n", "
1 | \n", "33.0 | \n", "33.0 | \n", "12.0 | \n", "33.0 | \n", "2.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "9.45 | \n", "... | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "2.246 | \n", "3.240 | \n", "3.497 | \n", "1.0 | \n", "1.0 | \n", "
2 | \n", "23.0 | \n", "30.0 | \n", "9.0 | \n", "30.0 | \n", "1.0 | \n", "2.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "6.30 | \n", "... | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "1.0 | \n", "0.0 | \n", "1.841 | \n", "3.240 | \n", "3.401 | \n", "3.0 | \n", "0.0 | \n", "
3 | \n", "38.0 | \n", "35.0 | \n", "5.0 | \n", "76.0 | \n", "2.0 | \n", "10.0 | \n", "1.0 | \n", "1.0 | \n", "1.0 | \n", "6.05 | \n", "... | \n", "1.0 | \n", "1.0 | \n", "1.0 | \n", "1.0 | \n", "1.0 | \n", "1.800 | \n", "3.807 | \n", "4.331 | \n", "4.0 | \n", "0.0 | \n", "
4 | \n", "7.0 | \n", "35.0 | \n", "14.0 | \n", "80.0 | \n", "2.0 | \n", "15.0 | \n", "0.0 | \n", "1.0 | \n", "0.0 | \n", "7.10 | \n", "... | \n", "0.0 | \n", "0.0 | \n", "1.0 | \n", "1.0 | \n", "0.0 | \n", "1.960 | \n", "3.091 | \n", "4.382 | \n", "3.0 | \n", "0.0 | \n", "
5 rows × 28 columns
\n", "\n", " | tenure | \n", "age | \n", "address | \n", "income | \n", "ed | \n", "employ | \n", "equip | \n", "callcard | \n", "wireless | \n", "churn | \n", "
---|---|---|---|---|---|---|---|---|---|---|
0 | \n", "11.0 | \n", "33.0 | \n", "7.0 | \n", "136.0 | \n", "5.0 | \n", "5.0 | \n", "0.0 | \n", "1.0 | \n", "1.0 | \n", "1 | \n", "
1 | \n", "33.0 | \n", "33.0 | \n", "12.0 | \n", "33.0 | \n", "2.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "1 | \n", "
2 | \n", "23.0 | \n", "30.0 | \n", "9.0 | \n", "30.0 | \n", "1.0 | \n", "2.0 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0 | \n", "
3 | \n", "38.0 | \n", "35.0 | \n", "5.0 | \n", "76.0 | \n", "2.0 | \n", "10.0 | \n", "1.0 | \n", "1.0 | \n", "1.0 | \n", "0 | \n", "
4 | \n", "7.0 | \n", "35.0 | \n", "14.0 | \n", "80.0 | \n", "2.0 | \n", "15.0 | \n", "0.0 | \n", "1.0 | \n", "0.0 | \n", "0 | \n", "